首页|2维薛定谔方程的一种高精度紧致差分格式

2维薛定谔方程的一种高精度紧致差分格式

扫码查看
该文对2维薛定谔方程利用局部一维化方法,将2维方程分裂为x、y方向的2个1维薛定谔方程,然后采用6阶紧致格式的离散方法来处理空间变量的2阶导数项,将薛定谔方程转化为一个常微分方程组.通过L-稳定Simpson方法对上述空间离散化得到的常微分方程进行离散化,得到了一种具有空间6阶精度和时间3阶精度的格式,并证明了该格式无条件稳定性.并通过数值模拟和对比方法验证了格式的有效性.
The High-Order Compact Difference Scheme for Two-Dimensional Schr?dinger Equation
In this paper,the two-dimensional Schrödinger equation is split into two one-dimensional Schrödinger equations in x and y direction by using the local one-dimensional method.Then,the sixth-order compact scheme is used to deal with the second derivative terms of spatial variables,and the Schrödinger equation is transformed into a system of ordinary differential equations.The L-stable Simpson method is used to discretize the ordinary differential equation obtained from the space discretization.Therefore,a scheme with spatial sixth-order accuracy and temporal third-order accuracy is obtained,and the unconditional stability of the scheme is proved.Finally,the validity of the scheme is verified by numerical simulation and comparison.

two-dimensional Schrödinger equationhigh-order compact difference schemelocal one-dimensional methodL-stable Simpson method

依力米努尔·尼扎木、开依沙尔·热合曼

展开 >

新疆大学数学与系统科学学院,新疆乌鲁木齐 830046

2维薛定谔方程 高精度紧致差分格式 局部1维化方法 L-稳定Simpson方法

国家自然科学基金新疆大学博士启动基金

11461069BS150204

2024

江西师范大学学报(自然科学版)
江西师范大学

江西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.538
ISSN:1000-5862
年,卷(期):2024.48(2)
  • 3