首页|改进的采样算法与无监督聚类相结合的软件缺陷预测模型

改进的采样算法与无监督聚类相结合的软件缺陷预测模型

扫码查看
该文首先在自适应综合过采样算法ADASYN(adaptive synthetic sampling)的基础上,考虑少数类内部不同密度簇之间的连接性问题,将与采样点距离为中等的点纳入新样本生成范围,改进得到T-ADA-SYN过采样优化算法,有效地增加了少数类内部不同密度簇的连接性,生成了分布更为均衡的数据集.然后使用基于连接的spectral clustering算法进行聚类预测操作,将过采样算法和无监督聚类相结合,提出一种新型实用的软件缺陷预测模型TA-SC(T-ADASYN+spectral clustering).以F-score为评价指标,spectral clustering为聚类模型进行验证.实验结果表明:改进的T-ADASYN过采样算法在公开的PROMISE数据集和NASA数据集上比常用的过采样算法均有6%的性能提升,且TA-SC模型在PROMISE和NASA 2个数据集上比常用聚类算法分别有3%和2%的性能提升.
The Software Defect Prediction Model Combining Improved Sampling Algorithm and Unsupervised Clustering
Firstly,based on adaptive comprehensive oversampling algorithm ADASYN(adaptive synthetic sam-pling),considering the connectivity among different density clusters within a small number of classes,the points that are middle neighbors distance from sampling points are included in the range of new samples,and the T-ADASYN oversampling optimization algorithm is obtained.The T-ADASYN oversampling optimization algorithm is improved to effectively increase the connectivity of clusters with different densities within a few classes and generate a more bal-anced data set.The connectivity-based Spectral Clustering algorithm is further used for the clustering prediction op-eration,thus combining the oversampling algorithm and unsupervised clustering for the first time and proposing a no-vel and practical software defect prediction model TA-SC(T-ADASYN+Spectral Clustering).Using F-Score as the evaluation indicator and Spectral Clustering as the clustering model for validation,the experimental results show that the improved T-ADASYN oversampling algorithm has an average improvement of 6%and 6%compared to common-ly used oversampling algorithms on the publicly available PROMISE dataset and NASA dataset,respectively,and the TA-SC model has the highest results of 3%and 2%improvement compared to commonly used clustering algorithms in both datasets.

software defect predictionclass imbalanceoversamplingclustering algorithmunsupervised learning

石海鹤、周世文、钟林辉、肖正兴

展开 >

江西师范大学计算机信息工程学院,江西南昌 330022

深圳职业技术大学人工智能学院,广东深圳 518055

软件缺陷预测 类别不平衡 过采样算法 聚类算法 无监督学习

国家自然科学基金国家自然科学基金教育部高等学校科学研究发展中心专项课题江西师范大学研究生创新基金

6206203961872123ZJXF2022255YJS2022027

2024

江西师范大学学报(自然科学版)
江西师范大学

江西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.538
ISSN:1000-5862
年,卷(期):2024.48(3)
  • 5