首页|一类微分方程的可分解解

一类微分方程的可分解解

扫码查看
6类典型一阶代数微分方程亚纯解的分解性一直被许多学者所关注。该文主要研究第3类一阶代数微分方程(f')3=a0(z)(f-τ1)2(f-τ2)2(f-τ3)2在超越系数下的分解性,其中a0(z)是亚纯函数,τ1、τ2、τ3都是判别复数,证明了:如果f(z)=h(g(z)),其中h(z)是非常数亚纯函数,g(z)是超越整函数,那么至多除去一个上对数密度为0的点集E外,有T(r,g)=O(T(r,a0))。
The Factorizable Solution of a Class of Differential Equations
The factorization of meromorphic solutions to six typical first order algebraic differential equations has always been a concern of many authors.The factorization of the third type of first order algebraic differential equations(f')3=a0(z)(f-τ1)2(f-τ2)2(f-τ3)2 under transcendental coefficients is mainly studied,where a0(z)is a meromorphic function and τ1,τ2,τ3 is a discriminative complex number.It is proved that if f(z)=h(g(z)),whereh(z)is a meromorphic function and g(z)is a transcendental integer function,then at most,except for a point set with zero logarithmic density E,there is T(r,g)=O(T(r,a0)).

meromorphic functionfactorizable solutionupper logarithmic density

张晓婷、蒋春玲、叶锋

展开 >

广州软件学院基础部,广东 广州 510990

亚纯函数 可分解解 上对数密度

2024

江西师范大学学报(自然科学版)
江西师范大学

江西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.538
ISSN:1000-5862
年,卷(期):2024.48(4)