首页|基于依存结构的关系三元组抽取方法

基于依存结构的关系三元组抽取方法

扫码查看
信息抽取是自然语言处理领域的关键任务,关系三元组抽取是信息抽取的核心子任务。在关系三元组抽取任务中,利用句子的依存结构信息可以加强对句子的全局理解,从而提升模型的抽取效果。该文提出了一种基于依存结构分析和图神经网络的抽取方法。首先利用预训练模型得到文本向量语义表示;其次获取文本的依存结构信息并构建成图;接着利用图神经网络编码图的结构信息获取全局理解;最后通过特定的解码方式抽取出文本蕴含的关系三元组。实验结果表明:该抽取方法在NYT29、NYT24和WebNLG数据集上的精确率比已有的联合抽取模型精确率提升0。1%~0。6%,召回率提升0。2%~0。5%,F1值提升 0。1%~0。3%。
The Study on Relational Triplet Extraction Method Based on Dependency Structure
Information extraction is the key task in natural language processing,and relational triplet extraction is the core subtask of information extraction.In the relational triplet extraction task,using the dependency structure information of the sentence can strengthen the global understanding of the sentence,and can help improve the extraction effect of the model.The extraction method based on dependency structure analysis and graph neural networks is proposed.Firstly,the model uses the pre-trained model to obtain the semantic representation of the text vector.Secondly,the model obtains the dependency structure information of text and constructs the graph,and uses the graph neural network to obtain the global understanding of the structure information of the graph.Finally,the model extracts the relational triples contained in the text through a specific decoding method.The experimental results show that compared with the existing combined extraction models on NYT29,NYT24 and WebNLG,the accuracy of the proposed method is improved by 0.1%~0.6%,the recall rate is improved by 0.2%~0.5%,and the F1 value is improved by 0.1%~0.3%.

information extractionrelational triplesdependency structure analysisgraph neural network

陈筱、黄琪、罗文兵、罗凯威、王明文

展开 >

江西师范大学计算机信息工程学院,江西南昌 330022

南昌市气象局,江西南昌 330038

江西师范大学数字产业学院,江西上饶 334000

信息抽取 关系三元组 依存结构分析 图神经网络

2024

江西师范大学学报(自然科学版)
江西师范大学

江西师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.538
ISSN:1000-5862
年,卷(期):2024.48(4)