首页|双足自平衡移动机器人全覆盖搜索任务轨迹优化

双足自平衡移动机器人全覆盖搜索任务轨迹优化

扫码查看
考虑双足自平衡移动机器人执行搜索任务时,仅仅以物体轮廓特征作为路径计算的基础,没有考虑可能对路径造成影响的边缘细节特征,易出现采集图像信息较少的问题,且由于搜索环境复杂,同时需要躲避障碍物,导致搜索路径较长、效率偏低.提出双足自平衡移动机器人全覆盖搜索任务轨迹择优方法.优化机器人视觉图像采集结果,并采用灰度变换函数对图像展开灰度变换,将双边滤波函数应用于Retinex算法中,取代传统算法中的高斯滤波,获得环境图像的反射分量,并通过下述公式加权融合处理R、G、B灰度值,获得双足机器人全覆盖搜索任务时保留了边缘且增强细节的图像,并将其输入至支持向量机,识别环境中的目标与障碍物.根据获取的环境信息建立模拟地图,构建机器人搜索任务的路径,通过蚁群算法获取最优路径.实验结果表明,所提方法能够躲避障碍物到达目标位置,且路径距离短、规划效率高.
Research on Optimal Trajectory Selection for Full Coverage Search Tasks of Biped Self balancing Mobile Robots
When considering the search task of a bipedal self balancing mobile robot,only the contour features of the object are used as the basis for path calculation,without considering the edge details that may affect the path.This can lead to the problem of less image information collected,and due to the complex search environment and the need to avoid obstacles,the search path is long and inefficient.This paper proposes a full coverage search task trajectory optimization method for bipedal self balancing mobile robots.The robot vision image acquisition results are optimized.The gray-scale transformation function is used to carry out gray-scale transformation on the image.The bilateral filter function is applied to replace the Gaussian filter in the Retinex algorithm.The reflection component of the environment image is obtained,and the R,G,B gray-scale values are weighted and fused to obtain the image that retains the edge and enhances the details when the biped robot fully covers the search task.The image is input into the support vector machine to identify the targets and obstacles in the environment.Based on the obtained environmental information,a simulation mapis established,a path for robot search tasks is constructed,and the optimal path is obtained through ant colony algorithm.The experimental results show that the proposed method can avoid obstacles and reach the target location,with short path distance and high planning efficiency.

biped self balancing mobile robotgray level transformation functionretinex algorithmtarget searchtrajectory planning

罗通、王篮仪

展开 >

三亚学院 信息与智能工程学院,海南三亚 572022

陈国良院士团队创新中心,海南三亚 572022

三亚学院 理工学院,海南三亚 572022

双足自平衡移动机器人 灰度变换函数 Retinex算法 目标搜索 轨迹规划

海南省自然科学基金

620QN287

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(1)
  • 17