首页|无人机激光雷达遥感图像显著性目标检测方法

无人机激光雷达遥感图像显著性目标检测方法

扫码查看
遥感图像目标远程检测通常采用单一模态特征提取方法,显著性目标特征信息提取不全面,会导致显著性目标检测效果较差,为此提出无人机激光雷达遥感图像显著性目标检测方法.在VGG16网络的支持下,结合级联运算与ReLu激活函数提取激光雷达遥感图像的多模态特征,以对显著性目标的特征进行全面描述.根据多模态特征提取结果,利用多分支组融合与单组融合找出不同等级间相的关性,通过Conv+ReLu层完成各等级特征融合.根据特征重要程度赋予特定的权重值,采用空间竞争函数,将各层加权和进行叠加,生成显著性目标图,实现无人机激光遥感图像显著性目标检测.实验结果表明,所提出检测方法的显著性目标检测精度高,且检测时间开销小,最长时间开销在14 s左右.
Significant Target Detection Method for Unmanned Aerial Vehicle Lidar Remote Sensing Images
Remote target detection in remote sensing image usually adopts single mode feature extraction.The feature information extraction of salient targets is not comprehensive,which will lead to poor detection of significant targets.Therefore,a method of significant target detection in UAV lidar remote sensing image is proposed.With the support of VGG16 network,the multimodal features of lidar remote sensing images are extracted by combining cascade operation and ReLu activation function to comprehensively describe the features of significant targets.Based on the results of multimodal feature extraction,the correlation between different levels is identified using multi-branch group fusion and single group fusion,and the feature fusion of each level is completed through Conv+ReLu layer.Specific weight values are assigned based on the importance of features,a spatial competition function is used to stack the weighted sum of each layer,and a significant target map is generated to achieve significant target detection in drone laser remote sensing images.The experimental results show that the proposed detection method has high accuracy in detecting significant targets and low detection time cost,with a maximum time cost of around 14 seconds.

drone LiDARremote sensing imagessignificance goalsdeconvolution layerconvolutional layer

韦少凡、张琼

展开 >

桂林旅游学院,广西桂林 541006

无人机激光雷达 遥感图像 显著性目标 反卷积层 卷积层

广西壮族自治区高等学校中青年教师科研基础能力提升项目

2019KY1057

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(2)
  • 15