首页|基于注意力机制和LeNet5网络的转子系统故障诊断

基于注意力机制和LeNet5网络的转子系统故障诊断

扫码查看
设备振动参数高效处理的要求在数据分块时选用经验值方法的条件下难以实现,这会降低重构数据精度.为了进一步提高旋转机械故障诊断能力,提出了一种基于注意力机制和LeNet5网络的故障诊断方法,并成功应用于转子系统上.研究结果表明:对比传统的LeNet5网络,所提方法打破无注意力机制的局限性,整体优越性更强,参数设置无改变.将注意力机制加入LeNet5网络后,极大提高了故障识别的准确率以及模型的训练速度.相比较其它方法,文中所述方法的故障类型检测结果明显是精确率最高的,均在95%以上,满足实际的要求.在诊断旋转机械故障时,结合卷积神经网络及注意力机制进行测试研究,最终证明此方法可行性较高,该研究院可以拓展到其它机械传动领域,具有一定应用价值.
Fault Diagnosis of Rotor System Based on Attention Mechanism and Lenet5 Network
The high efficiency of vibration parameter processing is difficult to achieve when the empirical value method is used to deal with partitioned data,which will reduce the accuracy of the reconstructed data.In order to further improve the fault diagnosis ability of rotating machineries,a fault diagnosis method based on the attention mechanism and the LeNet5 network is proposed and successfully applied to a rotor system.The results show that compared with the traditional LeNet5 network,the proposed method overcomes the limitations of the inattentive mechanism,and the overall performance is better without the need to change the parameter settings.By adding the attention mechanism to the LeNet5 network,the accuracy of fault identification and the training speed of the model are significantly improved.Compared with other methods,the fault type detection results of this method demonstrate the highest accuracy rate,all of which are above 95%,and meet the practical requirements.In the diagnosis of rotating machinery faults,the convolutional neural network and attention mechanism are combined to test and study,and finally proved that the feasibility of this method is high,and the research can be extended to other mechanical transmission fields,which has certain application value.

rotating machineryfault diagnosiswavelet transformattention mechanismconvolutional neural network

吴梅丽、朱渔、李晓明、张建国

展开 >

宜春职业技术学院 信息工程学院,江西宜春 336000

南昌大学 机械工程学院,南昌 330031

江西铂川自动化科技有限公司,江西萍乡 337000

旋转机械 故障诊断 小波变换 注意力机制 卷积神经网络

江西省教育厅科学技术研究项目

GJJ191671

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(2)
  • 19