首页|基于Elman神经网络的车削颤振预报函数构建

基于Elman神经网络的车削颤振预报函数构建

扫码查看
为了预报车削颤振现象,构建了再生型车削颤振的预报函数.分析再生型颤振机理的基础上得到了其稳定性叶瓣图,为颤振预报提供可能.利用Elman神经网络对获取的数控车削过程中从稳定车削阶段到车削颤振阶段的时域信号进行训练和测试,提出了均方误差作为判别颤振的特征量.为了更准确的进行颤振预报,引入符号函数来构建再生型车削颤振的预报函数,确定了预报函数的阈值为5.625并试验了在该预报函数阈值时的预报准确率为92%.最后从频率域中分析,根据颤振的特点侧面验证了所构建预报函数的正确性.
The Construction of Turning Chatter Forecast Function Based on Elman Neural Network
In order to forecast the turning chatter phenomenon,a turning chatter forecast function is constructed.After analyzing the mechanism of regenerative chatter,a stability lobes diagram is obtained and provides the possibility of chatter forecast.The Elman neural network is used to train and test the time-domain signal from the stable turning stage to the turning chatter during the process of turning.The mean square error is proposed as the feature quantity for judging chatter.In order to predict the chatter more accurately,the sign function is used to construct the forecast function of regenerative turning chatter and the threshold of the forecast function is determined to be 5.625 and the prediction accuracy at the threshold of the forecast function is 92%.Finally,in the frequency domain,according to the characteristics of chatter,the validity of the constructed forecast function is verified.

regenerative turning chatterforecast functionelman neural networkmean square error

邱辉、陈益丰、潘晓铭、徐国木、李国平、谈红英

展开 >

温州大学 机电工程学院,浙江温州 325000

宁波大学 机械工程与力学学院,浙江宁波 315000

浙江安防职业技术学院应急技术学院,浙江温州 325000

再生型车削颤振 预报函数 Elman神经网络 均方误差

温州市科技局重大科技创新攻关项目浙江省高等学校实验室工作研究项目温州市科协服务科技创新项目浙江安防职业技术学院校级科研项目

ZG2020029YB202224kjfw0193AF2023Y18

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(2)
  • 18