首页|基于机器视觉的钢结构螺栓群松动批量角度识别

基于机器视觉的钢结构螺栓群松动批量角度识别

扫码查看
在钢结构建筑中,对节点螺栓进行松动检测有利于保障钢结构的稳定性和安全性.为解决螺栓松动目前存在的检测角度范围及批量检测限制问题,提出了一种基于机器视觉的钢结构螺栓松动自动化非接触式批量角度识别方法.首先,通过目标检测网络定位螺栓群区域目标框,根据提取的螺栓区域进行标定和编号,提出掩膜构建、ROI分割和占空比判断的组合处理流程,采用pgonCorners角点算法进行螺栓群角点位置坐标提取.进一步结合颜色匹配算法,完成对螺栓松动前后标记点位置绘制并提取对应的索引号,根据坐标系变换算法和数组操作算法完成螺栓松动批量角度计算.试验结果表明,该方法可准确地提取螺栓相关特征,最大相对误差为5.8%,能实现对螺栓群松动角度的准确和快速检测.
Machine Vision-based Bulk Angle Identification of Loose Steel Structure Bolt Groups
In steel structure buildings,the loosening detection of nodal bolts helps to ensure the stability and safety of the steel structures.In order to solve the current problems of bolt loosening in terms of detection angle range and batch detection limitation,a machine vision-based automated batch angle recognition method for steel structure bolt loosening is proposed.Firstly,the target frame of the bolt group area is located by the target detection network.The extracted bolt area is calibrated and numbered according to the extracted bolt area.The combined processing flow of mask construction,ROI segmentation and duty cycle judgement is proposed.The pgonCorners angle point algorithm is used to extract the angle point location coordinates of the bolt group.Further combined with the color matching algorithm,the drawing and extraction of the corresponding index numbers of the marked point positions before and after the bolt loosening are completed.And calculation of the bolt loosening group angle is completed according to the coordinate system transformation algorithm and the array operation algorithm.The test results show that the method can accurately extract bolt-related features,the maximum relative error is 5.8%,and it can achieve accurate and fast detection of bolt loosening angle.

steel structure jointbolt loosenessmachine visionangle calculationbatch identification

赵丽洁、刘思杨、王昊

展开 >

河北工程大学 土木工程学院,河北邯郸 056038

天津农学院 水利工程学院,天津 300384

天津城建大学 土木工程学院,天津 300384

钢结构节点 螺栓松动 机器视觉 角度计算 批量识别

国家自然科学基金

52208193

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(2)
  • 18