首页|一种求解IPPS问题的混合遗传迭代邻域搜索优化算法

一种求解IPPS问题的混合遗传迭代邻域搜索优化算法

扫码查看
针对最小化最大完工时间的工艺规划与调度集成问题,设计并研究一种混合遗传-迭代邻域搜索优化算法.首先考虑到兼具工序柔性、序列柔性和加工柔性的问题特质,采用三层染色体编码方式,同时考虑到可行解集过大,运用结合启发式规则分配法的种群初始化方式;其次,考虑遗传算法更侧重于全局优化,引入迭代邻域搜索对遗传算法较优解进行局部搜索,并通过多次迭代后最优解仍保持不变时引入新种群进行竞争的策略,避免陷入局部最优陷阱;最后通过与已有算法对已知案例的求解结果进行比较分析,发现本算法得出最优结果优于绝大多数的优良算法,随后采用某飞机制造公司某工位为背景构建的实际案例进行验证,说明了该算法的有效性.
A Hybrid Genetic-Iterative Neighborhood Search Optimization Algorithm for Solving IPPS Problems
In order to solve the integrated process planning and scheduling(IPPS)problem of optimizing the makespan,a hybrid genetic-iterative neighborhood search optimization algorithm is designed and studied.Firstly,considering the operation flexibility,sequencing flexibility and processing flexibility of the IPPS problem,a three-layer chromosome coding method is adopted.At the same time,considering the large feasible solution set,the population initialization method combined with a heuristic rule allocation method is used.Secondly,considering the focus on global optimization of genetic algorithm,iterative neighborhood search is introduced to search locally for the optimal solutions of the genetic algorithm.Besides,the strategy of introducing a new population to compete when the optimal solution remains unchanged after multiple iterations is used to avoid the local optimal trap.At last,by comparing and analyzing the solution results of known cases with existing algorithms,the optimal result obtained by this algorithm is better than most of the excellent algorithms.And using an actual case constructed in a certain station of an aircraft manufacturing company as the background,the effectiveness and the superiority of the proposed algorithm is verified.

integrated process planning and schedulinghybrid genetic-iterative neighborhood searchmakespan

何佳炜、王皓、段旭洋、王卓识、陈智超、汪敏、韩子熹

展开 >

上海交通大学 弗劳恩霍夫智能制造创新中心,上海 201306

中国商飞上海飞机制造有限公司,上海 201324

工艺规划与调度集成问题(IPPS) 混合遗传-迭代邻域搜索 最小化完工时间

上海市科委重大项目资助

21NL2600200

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)