首页|一种面向被动悬架星球车的轮速协调控制方法

一种面向被动悬架星球车的轮速协调控制方法

扫码查看
被动悬架星球车机构形式简单、可靠性好,是地外星表探测的重要装备,但同时也因被动关节的引入而导致车轮间产生推动和拖曳,引起车轮磨损并削弱了星球车的驱动能力.提出一种基于接触角估计的轮速协调控制方法,首先建立星球车的运动学模型与轮心速度映射模型,并利用轮心速度在线实时估计轮地接触角;进而,进行星球车直线与转向运动规划,结合轮地接触角和悬架位姿信息建立车轮速度约束方程,实现多轮轮速的确定求解.最后在MATLAB与COPPELIASIM中搭建了联合仿真模型进行仿真验证,搭建样机与实验场地进行实验验证,结果表明该方法可准确估计轮地接触角,估计最大误差约为9.2%;并降低行驶中车轮的滑转率,车轮通过障碍物时整车滑转率最大降低6%,提升了星球车行驶能力.
A Coordination Control Method of Wheel Speeds for Planetary Rovers With Passive Suspensions
Planetaryrovers with passive suspensions utilize simplemechanisms andgood stability,and play an important role in extraterrestrial explorations.However,passive joints cause an actuation interference between wheels,which leads to wheel wearing and the decrease of the driving ability of a rover.This paper proposes a coordination control method of wheel speeds based on the estimation of terrain-wheel contact angles.Firstly,the kinematic model of the rover is established,and then the velocity mapping from the rover body to wheel centers is derived.Thus,contact angles can be estimated in real time.Secondly,motion planning of the rover is performed.The constraint equations of wheel speeds are derived from the contact angle,the position and pose of the rover suspension.Accordingly,the driving speeds of each wheel can be calculated.Finally,the joint simulation using MATLAB and COPPERLIASIM software is carried out.The prototype and terrain are built to validate the proposed control method.The maximum error of the estimated contact angles is approximately 9.2%.Moreover,the slippage is decreased by 6%and the driving capability of the rover is improved.

passive suspensionplanetary rovercontact anglecoordination control

孙嘉泽、闻勍鹏、何俊

展开 >

上海交通大学 机械与动力学院,上海 200240

被动悬架 星球车 接触角 轮速协调

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)