首页|基于深度学习的白车身焊接路径智能规划方法

基于深度学习的白车身焊接路径智能规划方法

扫码查看
针对白车身焊接路径规划经验规则多、路径复杂等问题,提出一种端到端的序列到序列深度学习框架,通过学习大量历史数据来提高路径规划的效率与质量.基于LSTM编码器、LSTM解码器和注意力机制搭建深度学习模型,对焊点数据进行归一化和预排序,同时构建了焊点表,提升了模型的训练效率和预测准确率.实现了向模型输入无序的焊点序列,输出目标焊点序列.在白车身左前门焊接生产线上的实验结果表明,所提方法相较于经典机器学习算法,在面对多样的约束条件时准确性更高,焊接路径规划结果更合理.
Welding Path Planning of Body-in-White Based on Deep Learning
Aiming at the problem of too many empirical rules and complex paths in the welding path planning of the body-in-white,thispaperproposes an end-to-end sequence-to-sequence deep learning framework to improve the efficiency and quality of path planning by learning a large amount of historical data.A deep learning model is built based on LSTM encoder,LSTM decoder and attention mechanism.The weldpoint data is normalized and pre-sorted,and a weld point table is built to improve the training efficiency and prediction accuracy of the model.The target weld point sequence is obtained from unordered weld point sequence.The experimental results on the welding production line of the left front door of the body-in-white show that the proposed method is more accurate when facing various constraints,and the welding path planning results are more reasonable.

body-in-whitewelding path planningsequence-to-sequence learninglong short-term memory networkencoder-decoder

余径舟、何其昌、时轮、杨冬梅

展开 >

上海交通大学 机械与动力工程学院,上海 200240

上汽通用汽车有限公司,上海 201206

白车身 焊接路径规划 序列到序列学习 长短时记忆网络 编码器-解码器

国家自然科学基金资助项目

51975362

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)