首页|基于数据驱动的混合动力车发动机离合器异常连接状态检测

基于数据驱动的混合动力车发动机离合器异常连接状态检测

扫码查看
当发电机离合器没有成功完成接合或分离动作时,车辆无法完成电动汽车模式和混合动力汽车模式的模式转换,此时发动机无法正确实现动力传递.因此,采用数据驱动技术实现对发动机离合器连接状态的异常检测,先对车辆动力结构和发动机离合器行为进行阐述,接着使用数据差值和模式提取对数据进行预处理,然后展示基于多层感知器、长短期记忆、卷积神经网络和支持向量机这四种机器学习算法的异常检测模型训练方法,最后借助北京奔驰汽车有限公司的实际车辆测试数据和样机平台测试数据对模型性能进行验证.实验结果表明,长短期记忆算法和卷积神经网络性能较差,多层感知器和支持向量机则能较好的诊断出离合器的异常连接状态,且支持向量机性能表现最佳,准确率最高达到98.7%.
Detection of Abnormal Clutch Connection Status of Hybrid Vehicle Engine Based on Data Drive
When the generator clutch does not successfully complete the engagement or separation action,the vehicle cannot complete the mode conversion between the electric vehicle mode and the hybrid vehicle mode,and the engine cannot correctly achieve power transmission.Therefore,data-driven technology is used to detect the abnormal connection state of the engine clutch.First,the vehicle power structure and the behavior of the engine clutch are described,and then data difference and pattern extraction are used to preprocess the data.Then,the anomaly detection model training method based on four machine learning algorithms,namely multi-layer perceptron,long short-term memory,convolutional neural network and support vector machine,is presented.Finally,the performance of the model is verified by the actual vehicle test data and the prototype platform test data of Beijing Benz Automobile Co.,LTD.The experimental results show that the performance of the long short-term memory algorithm and convolutional neural network is poor,while multi-layer perceptron and support vector machine can better diagnose the abnormal connection state of the clutch;and the support vector machine has the best performance,with the highest accuracy of 98.7%.

hybrid vehicleengine clutchconnection statusanomaly detectiondata-driven

张华磊、吕江毅、冯志新、陈屈武

展开 >

北京电子科技职业学院 汽车工程学院,北京 100176

沈阳航空航天大学 机电工程学院,沈阳 110136

混合动力车 发动机离合器 连接状态 异常检测 数据驱动

国家教育部科技发展中心资助专项课题

ZJXF2022027

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)