首页|基于DCLSTM网络的轴承故障信号提取及分类识别

基于DCLSTM网络的轴承故障信号提取及分类识别

Bearing Fault Signal Extraction and Classification Recognition Based on DCLSTM Network

扫码查看
对轴承故障诊断时,除了需考虑空间结构的关系之外,还应分析数据在不同时间维度方面的差异,综合运用卷积神经网络(CNN)和长短期记忆网络(LSTM)建立深度卷积循环神经网络(DCLSTM),实现优异的时间与空间特征性能,能够充分发挥传感序列特征.利用初始信号的自适应学习方法确定特征参数,有效避免在特征选择与分类过程中受到主观因素的影响.研究结果表明:相对传统方法,采用DCLSTM模型准确率达到了 99%以上,波动幅度也很小,表现出高稳定性状态.DCLSTM网络具备最高稳定性,对应标准差为0.59%,获得比传统方法更优的故障诊断效果.DCLSTM诊断精度对于各电机负载达到了最高水平,波动幅度只有0.64%.支持向量机(SVM)与CNN依次波动2.8%与5.99%,表明DCLSTM网络对于各工况故障都可以实现高精度诊断的要求.
For bearing fault diagnosis,in addition to considering the relationship between spatial structure,the differences of data in different time dimensions should also be analyzed,and deep convolutional recurrent neural network(DCLSTM)should be established by comprehensive use of convolutional neural network(CNN)and long short-term memory network(LSTM)to achieve excellent temporal and spatial characteristics.The sensor sequence features can be fully utilized.Using the adaptive learning method of the initial signal to determine the feature parameters,it can effectively avoid the influence of subjective factors in the process of feature selection and classification.The results show that compared with the traditional method,the accuracy of DCLSTM model is more than 99%,and the fluctuation range is small,showing high stability.DCLSTM network has the highest stability,the corresponding standard deviation is 0.59%,and the fault diagnosis effect is better than the traditional method.DCLSTM diagnostic accuracy reached the highest level for each motor load,with a fluctuation range of only 0.64%.Support vector machine(SVM)and CNN fluctuated by 2.8%and 5.99%respectively,indicating that DCLSTM network can realize the requirement of high precision diagnosis for faults in various working conditions.

bearingfault diagnosisconvolutional neural networkrecurrent neural networkfeature extraction

刘晓腾、王德涛、孙静、陈广华

展开 >

新乡职业技术学院 计算机学院,河南新乡 453006

开封技师学院 智能制造学院,河南开封 475004

河南科技学院 机电学院,河南新乡 453000

轴承 故障诊断 卷积神经网络 循环神经网络 特征提取

河南省高等学校重点科研项目

22A4710005

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)