首页|TC4钛合金微锻残余应力预测模型及实验验证

TC4钛合金微锻残余应力预测模型及实验验证

扫码查看
为了能够预测TC4微锻过程所引入的残余应力场,提出一种基于卷积神经网络(CNN)和长短时记忆网络(LSTM)的组合模型,其中CNN模块对输入数据进行高维特征提取,LSTM模块进行序列化建模处理.建立了TC4微锻有限元模型并通过微锻实验验证了有限元模型的准确性,基于有限元仿真建立数据集并对该模型进行训练,结果表明,该模型的各项性能指标都优于LSTM模型.通过微锻实验验证了该模型的预测效果,表明该模型具备一定的有效性和实用性.
Prediction Model and Experimental Verification of Residual Stress in Micro-forging of TC4 Titanium Alloy
In order to predict the residual stress field introduced by the micro-forging process of TC4,a combined model based on convolutional neural network(CNN)and short and long time memory network(LSTM)is proposed in this paper.The CNN module extracts high-dimensional features from the input data,and then the LSTM module carries out serialization modeling.The TC4 micro-forging finite element model is established and the accuracy of the finite element model is verified by the micro-forging experiment.The data set is established based on the finite element simulation and the model is trained.The results show that the performance indices of the model are superior to the LSTM model.The prediction performance of the model is verified by the micro-forging experiment,which shows that the model has certain validity and practicability.

neural networksurface micro-forgingresidual stress predictionTC4 titanium alloy

陈耀宗、李亚萍、王亚齐、王成瀚、金思雨、沈彬

展开 >

上海交通大学 机械与动力工程学院,上海 200240

上海飞机制造有限公司,上海 201324

神经网络 表面微锻 残余应力预测 TC4钛合金

国家商用飞机制造工程技术研究中心创新基金项目

CO-MAC-SFGS-2022-2056

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)