首页|基于工业大数据的轴承包状态评估与故障预报

基于工业大数据的轴承包状态评估与故障预报

扫码查看
针对粗轧机轴承解体周期长、运行状态处于"信息黑箱"而难以提供准确有效的解体策略、信息提纯困难等问题,创新性的搭建了工业现场测试平台,实时、准确、完整的采集了上/下工作辊轴承在轧制不同板坯时的动态信息.通过对不同道次的加速度信号进行特征域分析,融合轴承力学模型和失效机理,为生产现场提供精准有效的轴承包解体策略.研究表明:通过跟踪测试的三套轴承包加速度信号可以清晰判别轧辊空转、咬钢、稳定轧制和抛钢四个阶段,其中稳定轧制阶段有明显的周期性冲击,利用波形因子、脉冲因子等指标值可以区分不同轴承包运行状态.利用加速度信号,采用频域积分法模拟系统的水平响应特性.除了咬钢和抛钢瞬间,外力也会导致系统产生较大水平响应,其中下辊响应幅值明显大于上辊.研究为粗轧机工作辊轴承的下机保养和故障预知性维修提供精准有效策略.
State Evaluation and Fault Prediction of Bearing Packets Based on Industrial Big Data
Aiming at issues such as long disintegration cycle of roughing mill bearings,the"black box"operating status,difficulties in providing accurate and effective disintegration strategies and information purification difficulties,an innovative industrial test system is presented in this paper.The dynamic information of the upper/lower work roll bearings in the rolling of different slabs is collected accurately,completely and in real-time.Acceleration signals from different passes are analyzed in the feature domain,and bearing mechanics models and failure mechanisms are fused to provide accurate and effective bearing package disintegration strategies for the production site.The results show that the acceleration signals of the three sets of bearing packs tested by tracking can clearly identify the four stages of roll idling,steel biting,stable rolling and steel throwing,in which there is an obvious periodic impact in the stable rolling stage,and the values of indices such as the waveform factor and the impulse factor can be used to clearly distinguish the different bearing packs'operating states.The frequency domain integration method is used to simulate the horizontal response characteristics of the system using the acceleration signal.In addition to biting and throwing steel instantly,external forces also cause the system to produce a large horizontal response,in which the lower roll response amplitude is significantly larger than that of the upper roll.The study provides a precise and effective strategy for the maintenance of the roughing mill's work roll bearings in the lower machine and the predictive repair of failures.

industrial big datarolling bearingdisintegration strategiesreliability assessmentfault forecast

王德芬、杨贺绪、张春兰

展开 >

宁夏理工学院 机械工程学院,宁夏石嘴山 753000

工业大数据 滚动轴承 解体策略 状态评估 故障预报

宁夏先进制造技术研究人才小高地资助项目

20181213

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(3)