首页|基于语义拓扑结构的井下无人机自主飞行路径规划方法

基于语义拓扑结构的井下无人机自主飞行路径规划方法

Autonomous Path Planning Method of Underground UAV Based on Semantic Topology

扫码查看
针对现有无人机室内探索路径规划方法存在的耗时过长的问题,结合井下环境特征,提出了一种基于语义拓扑结构的无人机飞行路径自主探索方法.该方法分为局部路径规划和全局路径规划两个层次.局部规划中,通过地面滤波和Delaunay三角剖分处理环境点云,获取安全性高的局部路径和识别交叉路口.在全局规划中,以路口为节点,通道为边,构建树形拓扑图,并通过深度优先算法实现重规划,确保对所有通道的高效探索.通过基于真实环境的仿真验证,结果显示该算法能够安全地在井下环境中完成探索,并显著缩短单次路径规划时间.
Aiming at the problem that existing UAV indoor exploration path planning methods are too time-consuming,a method for autonomous UAV flight path exploration based on semantic topology and considering the characteristics of the underground environment is proposed.This method is divided into two levels:local path planning and global path planning.In local planning,the environmental point cloud is processed through ground filtering and Delaunay triangulation to obtain high-security local paths and identify intersections.In the global planning,a tree topology is constructed with intersections as nodes and channels as edges,and the re-planning is implemented through a depth-first algorithm to ensure efficient exploration of all channels.Through the simulation verification based on the real environment,the results show that the algorithm can safely complete exploration in the underground environment and significantly shorten the single path planning time.

underground environmentautonomous explorationpath planning

颜玮杉、陈敏、程煌坤、梁庆华

展开 >

上海交通大学 机械与动力工程学院,上海 200240

井下环境 自主探索 路径规划

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(4)