首页|超声振动辅助铣削镍基高温合金 GH4169的切削性能研究

超声振动辅助铣削镍基高温合金 GH4169的切削性能研究

扫码查看
镍基高温合金GH4169是一种典型的难加工材料,在常规切削加工时伴随着刀具磨损大,表面质量差等现象.现代工业中对高性能材料(如高温合金、陶瓷、复合材料等)的需求增加,这些材料的加工难度大,常规刀具难以有效加工.随着超声波技术的不断发展,尤其是在材料加工领域的应用逐渐增多,超声振动切削成为了一个热门研究方向.超声振动切削是一种将超声波振动与切削工艺相结合的创新加工技术,可以显著减少切削力,提高加工速度,从而提升整体生产效率.借助超声振动的作用,可以减少切削过程中产生的表面粗糙度和缺陷,获得更好的表面质量.由于切削力的降低和热量的分散,超声振动切削能够有效减缓刀具的磨损,从而延长刀具的使用寿命.文中通过常规切削仿真和超声振动切削仿真分析,以切削时的应力、切削力、切削温度等作为评价指标,结果表明:超声振动切削过程中的的应力比常规最高可降低4.4%,最大温度最高可降低14.2%,切削力最高可降低50%.通过铣削正交试验,对比超声振动铣削的切削力、切削温度、表面粗糙度、刀具磨损,验证了超声振动铣削可以提高GH4169的切削性能,并通过极差分析法,优化了加工参数.影响表面粗糙度的主次关系为主轴转速>切削深度>每齿进给量.其参数优化为主轴转速2 500 r/min,每齿进给量0.05 mm/z,切削深度0.2 mm.影响刀具磨损的主次关系为每齿进给量>切削深度>主轴转速,参数优化结果为主轴转速2 000 r/min,每齿进给量0.03 mm/z,切削深度0.2 mm.选用过大的切削深度和每齿进给量,会出现表面质量较差、刀具磨损严重的情况.因此切削深度不宜超过0.2 mm,每齿进给量不宜超过0.05 mm/z.
Ultrasonic Vibration-assisted Milling of Nickel-based High-temperature Alloy GH4169:A Study of Cutting Performance
Nickel-based superalloy GH4169 is notoriously difficult to machine,typically leading to considerable tool wear and suboptimal surface quality during conventional cutting processes.The demand for high-performance materials(such as superalloys,ceramics,composite materials,etc.)in modem industry has increased,and the processing of these materials is difficult,and conventional tools are difficult to process effectively.With the continuous development of ultrasonic technology,especially in the field of material processing,ultrasonic vibration cutting has become a hot research direction.Ultrasonic vibration cutting is an innovative machining technology that combines ultrasonic vibration with the cutting process to significantly reduce cutting forces and increase processing speed,thereby improving overall production efficiency.With the help of ultrasonic vibration,the surface roughness and defects generated in the cutting process can be reduced,and better surface quality can be obtained.Due to the reduction of cutting force and the dispersion of heat,ultrasonic vibration cutting can effectively slow the wear of the tool,thus extending the service life of the tool.This study employs both conventional cutting simulations and ultrasonic vibration cutting simulations,using metrics such as cutting stress,cutting force and cutting temperature to assess performance.Results indicate that ultrasonic vibration cutting can decrease cutting stress by up to 4.4%,cutting temperature by up to 14.2%,and cutting force by up to 50%compared to conventional methods.Orthogonal milling experiments further confirm that ultrasonic vibration milling improves the cutting performance of GH4169 by comparing cutting force,cutting temperature,surface roughness and tool wear.Through range analysis,the machining parameters are optimized,revealing that the primary factors affecting surface roughness are spindle speed,cutting depth and feed per tooth.The optimal parameters for surface roughness are identified as a spindle speed of 2 500 r/min,a feed per tooth of 0.05 mm/z and a cutting depth of 0.2 mm.In contrast,the primary factors affecting tool wear are determined to be feed per tooth,cutting depth and spindle speed.The optimal parameters for tool wear are found to be a spindle speed of 2000 r/min,a feed per tooth of 0.03 mm/z and a cutting depth of 0.2 mm.Excessive cutting depth and feed per tooth are associated with poor surface quality and significant tool wear.Thus,it is recommended that the cutting depth does not exceed 0.2 mm and the feed per tooth does not exceed 0.05 mm/z.

high temperature alloyscutting forcecutting temperaturemachining parametersmachinability

杨文龙、谭延林、罗剑锋

展开 >

贵州工业职业技术学院,贵阳 550000

通用技术集团机床研究院有限公司 沈阳分公司,沈阳 110000

高温合金 切削力 切削温度 加工参数 切削性能

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(6)