首页|基于改进GA的自动驾驶横向LQR控制器优化设计

基于改进GA的自动驾驶横向LQR控制器优化设计

扫码查看
针对二次型调节器(LQR)在自动驾驶轨迹跟踪中因权重系数矩阵Q和R选取困难而导致的控制精度低及稳定性欠佳的问题,提出一种基于改进遗传优化算法的LQR横向轨迹跟踪控制方法.基于二自由度车辆动力学模型构建轨迹跟踪误差动力学模型,添加带有预测模块的前馈控制来消除模型简化带来的稳态误差的影响,通过控制器求解得到最优前轮转角控制量.最后,通过MATLAB/Simulink和Carsim搭建系统仿真模型进行仿真试验.仿真结果表明:无论在双移线工况还是连续换道工况,GA自适应系数LQR控制器具有比固定权重系数LQR控制更好的跟踪优势,同时在轨迹跟踪时能保证较好的精确性与稳定性.
Optimal Design of Horizontal LQR Controller for Automatic Driving Based on Improved Genetic Algorithm
In order to solve the problem of low control accuracy and poor stability of the quadratic regulator(LQR)in automatic driving trajectory tracking due to the difficulty in selecting the weight coefficient matrix Qand R,a LQR lateral trajectory tracking control method based on improved genetic optimization algorithm is proposed.The trajectory tracking error dynamic model is constructed based on the two-degrees-of-freedom vehicle dynamics model.The feedforward control with prediction module is used to eliminate the steady-state error caused by model simplification,and the optimal front wheel angle control is obtained by controller solution.MATLAB/Simulink and Carsim are used to build the system simulation model for simulation tests.The simulation results show that the GA adaptive coefficient LQR controller has better tracking advantages than the fixed weighting factors LQR control,no matter in the double-shift condition or continuous lane changing condition,and at the same time,it can ensure better accuracy and stability in trajectory tracking.

automatic drivingtrajectory trackinglinear quadratic regulatorgenetic optimization algorithm

陆洋、沈永峰、高乐子

展开 >

上海电机学院,上海 201306

自动驾驶 轨迹跟踪 线性二次型调节器 遗传优化算法

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(6)