首页|改进SSA优化PID整定的AGV轨迹跟踪控制

改进SSA优化PID整定的AGV轨迹跟踪控制

扫码查看
PID参数整定是优化自动导航车AGV运动控制的关键.为此,提出一种基于改进麻雀搜索算法ISSA优化PID参数整定的AGV控制算法.为了解决SSA搜索精度的不足,引入Logistic-Tent混合混沌初始化机制优化初始种群,以自适应方式更新发现者种群占比,并以惯性自适应机制更新发现者位置,提升算法全局搜索能力,同时设计混合变异机制丰富迭代后期种群多样性,避免陷入局部最优.利用改进SSA算法优化AGV运动控制中的PID参数整定,实现AGV轨迹优化控制.实验结果表明,与五种对比算法相比,改进算法的PID参数整定精度更高,能够有效提升AGV轨迹跟踪性能,其实际轨迹与目标轨迹拟合度更高.
Trajectory Tracking Control of Automated Guided Vehicle Based on Improved Sparrow Search Algorithm Optimizing PID Parameter Tuning
PID parameters tuning is a key to optimize the motion control of automatic navigation vehicles.Therefore,a AGV control algorithm based on improved sparrow search algorithm ISSA for optimizing PID parameters tuning is proposed.In order to address the shortcomings of SSA search accuracy,a logistic-tent hybrid chaotic initialization mechanism is introduced to optimize the initial population.An adaptive manner is used to update the proportion of the discoverer population,and an inertial adaptive mechanism is used to update the discoverer position to improve the algorithm global search ability.At the same time,a hybrid mutation mechanism is designed to enrich the diversity of the population in the later iteration stage and avoid falling into a local optimum.The improved SSA algorithm is utilized to optimize PID parameter tuning in AGV motion control and achieve AGV trajectory optimization control.The experimental results show that compared with five comparative algorithms,the improved algorithm has higher PID parameter tuning accuracy and can effectively improve AGV trajectory tracking performance,whose actual trajectory and target trajectory have a higher degree of fit.

PID parameter tuningsparrow search algorithmAGV controlchaos maphybrid mutation

吴险峰、侯绿

展开 >

深圳信息职业技术学院 中德机器人学院,广东 深圳 518100

中船重工集团717研究所,武汉 430074

PID参数整定 麻雀搜索算法 AGV控制 混沌映射 混合变异

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(6)