首页|求解无人机三维航迹规划问题的改进SO算法

求解无人机三维航迹规划问题的改进SO算法

扫码查看
针对复杂环境无人机三维航迹规划精度差、收敛慢及易生成局部最优的不足,提出多策略改进蛇群优化器的无人机三维航迹规划算法.建立了航迹规划的约束条件及目标代价函数,将三维航迹规划转换为目标函数优化问题.为了提升蛇群优化器SO的性能,设计改进Sine混沌映射提高初始种群质量和遍历性,设计非线性切换概率阈值实现种群战斗/交配模式自适应切换,引入学习因子自适应调节提升种群学习能力,并结合精英选择和模拟退火算法提升迭代后期种群多样性以避免停滞于局部最优.利用改进蛇群优化器求解无人机三维航迹规划问题,建立简单和复杂场景对算法有效性进行验证.结果表明,改进算法的规划航迹代价更低,规划效率得到有效提升.
Improved Snake Swarm Optimizer for UAV 3D Path Planning Problem
A multi-strategy improved snake swarm optimizer based unmanned aerial vehicle(UAV)3D trajectory planning algorithm is proposed to address the shortcomings of poor accuracy,slow convergence and easy generation of local optimum in complex environments.This work establishes constraints and objective cost functions for path planning,and transforms 3D path planning into an optimization problem for objective function.In order to improve the performance of the snake swarm optimizer,an improved Sine chaotic map is designed to improve the initial population quality and ergodicity.A nonlinear switching probability threshold is designed to achieve adaptive switching of population combat/mating modes.A learning factor adaptive adjustment is introduced to enhance the population learning ability.And in the later stage of iteration,an elite selection and simulated annealing algorithm are combined to enhance population diversity to avoid search stagnation at a local optimum.The improved snake swarm optimizer is used to solve the three-dimensional trajectory planning problem of unmanned aerial vehicles,and the effectiveness of the algorithm is verified by establishing simple and complex scenarios.The results show that the improved algorithm has lower cost for planning path and can effectively improve the planning efficiency.

unmanned aerial vehiclepath planningsnake swarm optimizerchaos mapping

李书辞、岳树岭

展开 >

河南水利与环境职业学院 信息工程学院,郑州 153000

河南财经政法大学 统计与大数据学院,郑州 450016

无人机 航迹规划 蛇群优化器(SO) 混沌映射

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(6)