首页|强耦合冲击干扰分解下旋转机械齿轮的故障诊断

强耦合冲击干扰分解下旋转机械齿轮的故障诊断

扫码查看
旋转机械齿轮的工作环境比较嘈杂,采集的多通道振动信号通常是多分量非线性时变数据,传统的模态分解方法通过分解振动信号,取得在随机共振中表现形式的差异化特征,完成故障特征提取.但是,这些方法忽略了冲击干扰信号间的耦合关系,一旦耦合关系复杂,就难以有效提取反映旋转机械齿轮故障的冲击分量.为了在复杂环境中准确判断机械齿轮故障信息,提出基于干扰耦合关系分解的旋转机械齿轮故障诊断方法.设计旋转机械齿轮振动信号干扰分解自编码器,并引入天牛须搜索算法分解自编码器提取的耦合关系.将强耦合关系下旋转机械齿轮振动信号干扰分解为多个耦合关联结果.结合卷积神经网络和门控递归单元,构建了双通道卷积神经网络旋转机械齿轮故障诊断模型.利用分解后的旋转机械齿轮振动信号作为输入数据,分别送入卷积神经网络和门控递归单元两个通道,提取不同的振动信号特征,实现旋转机械齿轮故障诊断.实验结果表明:这种前置滤波单元可以剔除原始信号中的随机噪声改善分解效果.所提方法损失值更低、准确率更高、所用时间更短.
Fault Diagnosis Method for Rotating Machinery Gears Under Strong Coupling Impact Interference Decomposition
The working environment of rotating mechanical gears is quite noisy,and the collected multi-channel vibration signals are usually multi-component nonlinear time-varying data.Traditional modal decomposition methods decompose the vibration signals to obtain differentiated features in the form of stochastic resonance,and complete fault feature extraction.However,these methods ignore the coupling relation between impact interference signals,and when the coupling relation is complex it is difficult to effectively extract the impact components that reflect the faults of rotating machinery gears.In order to accurately determine the fault information of mechanical gears in complex environments,a fault diagnosis method for rotating mechanical gears based on interference coupling relation decomposition is proposed.A rotating mechanical gear vibration signal interference decomposition autoencoder is designed,and the Tianniu whisker search algorithm is introduced to decompose the coupling relation extracted by the autoencoder.The vibration signal interference of rotating machinery gears under strong coupling relation is decomposed into multiple coupling correlation results.A dual channel convolutional neural network fault diagnosis model for rotating machinery gears is constructed by combining convolutional neural networks and gated recursive units.The decomposed vibration signals are respectively fed into two channels of convolutional neural networks and gated recursive units to extract different vibration signal features and achieve fault diagnosis of rotating machinery gears.The experimental results show that this pre-filtering unit can eliminate random noise in the original signal and improve the decomposition.The proposed method has lower loss values,higher accuracy,and shorter time consumption.

interference decompositiondual channel convolutionneural networkrotating mechanical gearsfault diagnosisnoise reduction autoencoder

潘鸣宇、姜义

展开 >

长春工程学院 工程训练中心,长春 130000

长春工程学院 理学院,长春 130000

干扰分解 双通道卷积 神经网络 旋转机械齿轮 故障诊断 降噪自编码器

2024

机械设计与研究
上海交通大学

机械设计与研究

CSTPCD北大核心
影响因子:0.531
ISSN:1006-2343
年,卷(期):2024.40(6)