首页|基于岭回归的近岸海域叶绿素a浓度反演模型

基于岭回归的近岸海域叶绿素a浓度反演模型

扫码查看
本文利用SeaDAS软件的三种标准业务化叶绿素a浓度反演算法OC2、OC3和OC4进行了黄海和东海的叶绿素a浓度反演,并利用 2003 年的黄海和东海实测叶绿素a浓度数据进行验证,发现OC3 和OC4 算法反演结果明显偏大,OC2算法反演结果略微偏大.针对上述三种算法的不足,本文提出了一种基于岭回归的叶绿素a浓度反演模型,并利用2003年的MODIS遥感数据进行了黄海和东海的叶绿素a浓度反演,经与实测数据对比及F检验(F=25.893,p=0.000<0.05),模型预测值与实测表层叶绿素a浓度值之间的平均绝对百分比误差(MAPE)为 21.8%,均方根误差(RMSE)为 0.325mg/m3 和决定系数(R2)为0.847.该模型可有效地克服OC2、OC3 和OC4 算法存在的共线性问题,准确性和拟合度优势明显.因此,基于岭回归的叶绿素a浓度反演模型能够有效地反演近海的叶绿素a浓度.
Inverse modeling of chlorophyll a concentration in near coastal waters based on ridge regression
This paper used the three standard operational chlorophyll a concentration inversion algorithms OC2,OC3,and OC4 of SeaDAS software to carry out chlorophyll a concentration inversion in the Yellow Sea and East Sea of China and validate the results by using the measured chlorophyll a concentration data of the Yellow Sea and East Sea of China in 2003.The inversion results of OC3 and OC4 algorithms were obviously large,and the inversion results of OC2 algorithm were slightly large.In view of the shortcomings of these algorithms,this paper proposed a chlorophyll concentration inversion model based on ridge regression,and utilized the MODIS remote sensing data in 2003 to carry out chlorophyll a concentration inversion in the Yellow Sea and East Sea.After comparison with the measured data and F-test(F=25.893,p=0.000<0.05),the mean absolute percentage error(MAPE)between model predictions and measured surface chlorophyll a concentrations was 21.8%,the root mean square error(RMSE)was 0.325mg/m3 and the coefficient of determination(R2)was 0.847,while the mean absolute percentage error(MAPE)between model predictions and measured surface chlorophyll a concentrations was 0.325 and the coefficient of determination(R2)was 0.847.The results showed that the inversion model can effectively overcome the deficiencies of OC2,OC3,and OC4 algorithms,with obvious advantages in accuracy and fitting degree.Therefore,the inversion model of chlorophyll a concentration based on ridge regression can effectively invert the chlorophyll a concentration in the offshore.

SeaDAS atmospheric correctionChlorophyll a inversion algorithmRidge regressionYellow Sea and East Sea

李磊、张红梅、熊志玲、包云

展开 >

南昌工程学院水利工程学院,江西南昌,330099

SeaDAS大气校正 叶绿素a反演算法 岭回归 黄海和东海

南昌工程学院研究生创新计划项目资助

YC2023-S985

2024

江西水利科技
江西省水利科学研究院 江西省水利厅科技情报站 江西省水利学会

江西水利科技

影响因子:0.292
ISSN:1004-4701
年,卷(期):2024.50(4)