首页|基于机器学习的风电机组机械传动系统故障诊断研究

基于机器学习的风电机组机械传动系统故障诊断研究

扫码查看
为准确诊断风电机组机械传动系统故障,提出一种基于机器学习的风电机组机械传动系统故障诊断方法.通过经验模态分解(EMD)方法分解风电机组机械传动系统振动信号,获取不同频率下的固有模态函数(IMF),经过对比分析获取可以描述故障特征频率的IMF分量,经过重构得到故障信号,使用自相关分析法去除故障信号中的噪声.通过机器学习中的Lasso正则化自编码神经网络提取风电机组机械传动系统故障特征,采用改进的粒子群算法对最小二乘支持向量机优化处理,构建分类器,将提取到的样本输入到分类器中,完成风电机组机械传动系统故障诊断.经实验测试证明,所提方法能够高效率、高精度地完成故障诊断处理.
Research on Fault Diagnosis of Wind Turbine Mechanical Transmission System Based on Machine Learning
In order to accurately diagnose the faults of the mechanical transmission system of wind tur-bines,a fault diagnosis method of the mechanical transmission system of wind turbines based on machine learning is proposed.The vibration signal of the mechanical transmission system of the wind turbine is de-composed by the EMD method,and the IMF at different frequencies is obtained.After comparative analy-sis,the IMF component that can describe the characteristic frequency of the fault is obtained,and the fault signal is obtained through reconstruction and autocorrelation analysis is used to remove noise from faulty signals.The fault features of the mechanical transmission system of wind turbines are extracted through the Lasso regularized self-encoding neural network in machine learning,and the improved particle swarm algorithm is used to optimize the least squares support vector machine,and a classifier is constructed.The extracted samples are input into the classifier to accomplish fault diagnosis of wind turbine mechanical transmission systems.The experimental test proves that the proposed method can complete the fault diag-nosis and processing with high efficiency and high precision.

machine learningwind turbinesmechanical transmission system fault diagnosisEMD

宾世杨、张振、唐俊杰、唐惜春

展开 >

国家电投集团广西兴安风电有限公司,广西 桂林 541300

机器学习 风电机组 机械传动系统故障诊断 EMD

广西电网有限责任公司科技项目

040600KK52100012

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(1)
  • 13