首页|花粉授粉机制在改进粒子群算法研究

花粉授粉机制在改进粒子群算法研究

扫码查看
针对柔性作业中多 目标优化问题,首先构建多 目标任务满意度数学模型,该模型以最小加工时间、最低制造成本和最短运输时间为目标,去量纲操作后利用几何平均法求解综合满意度评价值.然后,提出一种改进的粒子群算法(LFPSO),该算法为平衡算法全局和局部搜索能力,惯性权重采用幂函数自适应调节,为改变粒子群前期的搜索性能,在惯性权重中加入了 Logistic混沌映射丰富粒子多样性,为平衡全局搜索能力与局部搜索能力,引入花粉授粉机制作为全局搜索阈值.最后,将LFPSO算法与其他算法进行仿真对比,结果验证了 LFPSO算法具有良好的性能及解决柔性作业多 目标优化问题的有效性.
Research on Pollen Pollination Mechanism Employed in Improved Particle Swarm Optimization
Aiming at the multi-objective optimization problem in flexible operations,a multi-objec-tive task satisfaction mathematical model is first constructed.The model takes the minimum machining time,the lowest manufacturing cost and the shortest transportation time as its objectives,and uses the geo-metric average method to solve the comprehensive satisfaction evaluation value after dedimensional opera-tion.Secondly,an improved Logistic chaotic map and flower pollination mechanism employed in particle swarm optimization(LFPSO)is proposed.The inertia weight of the algorithm adopts power function adap-tive adjustment to balance global search ability and local search ability.In order to increase the search per-formance of particle swarm in the early stage,Logistic chaos mapping is added to the inertia weight to en-rich particle diversity.In order to balance global search ability and local search ability,pollen pollination mechanism is introduced as the global search threshold.Finally,the LFPSO algorithm is simulated and compared with the other three algorithms,and the results verify that the LFPSO algorithm has good per-formance and the effectiveness of solving the multi-objective optimization problem of flexible operation.

particle swarm optimizationsatisfaction evaluation valueLogistic chaos mappingpollina-tion thresholdinertial weight power function

曲鹏举、何雪

展开 >

贵州理工学院工程训练中心,贵州贵阳 550025

粒子群算法 满意度评价值 Logistic混沌映射 花粉授粉阈值 惯性权重幂函数

贵州省教育厅青年科技人才成长项目贵州省教育厅青年科技人才成长项目

黔教合KY字[2018]243黔教技[2022]274号

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(2)
  • 14