首页|改进YOLOv5s的纱管目标检测方法

改进YOLOv5s的纱管目标检测方法

扫码查看
为解决传统纱管分类方法效率低下、误差较高的问题,提出一种基于改进YOLOv5s算法的纱管目标识别方法.该算法融合了坐标注意力模块(CA)和Transformer模块,提出了新的SPP模块(SPP+)替换传统的SPP模块,使用加权双向特征金字塔网络(BiFPN)思想增强特征融合,并使用WIoU损失函数替代原有的损失函数.为验证改进算法性能,制作了一套纱管数据集,并基于改进YOLOv5s算法进行了纱管检测实验.实验结果表明改进的算法具有更好的识别效果.
Improved YOLOv5s Method for Yarn Tube Object Detection
To address the issues of low efficiency and high errors in traditional yarn tube classification methods,a yarn tube object recognition method based on an improved YOLOv5s algorithm is proposed.The enhanced YOLOv5s algorithm integrates a coordinate attention(CA)module and a Transformer mod-ule,introduces a new spatial pyramid pooling plus(SPP+)module to replace the conventional spatial pyr-amid pooling(SPP)module,enhances feature fusion using the weighted bidirectional feature pyramid net-work(BiFPN)concept,and replaces the original loss function with the wise intersection over Union(WIoU)loss function.To validate the performance of the improved algorithm,a yarn tube dataset is crea-ted,and yarn tube detection experiments are conducted based on the improved YOLOv5s algorithm.The experimental results show that the improved algorithm exhibits superior recognition capabilities.

deep learningyarn tube detectionWIoU

姜越夫、王青、吕绪山

展开 >

西安工程大学机电工程学院,陕西西安 710699

深度学习 纱管检测 WIoU

中国纺织工业联合会科技指导性项目

2021019

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(2)
  • 22