首页|基于局部归一化互信息联合约束的三维头颈部CT/MR配准方法

基于局部归一化互信息联合约束的三维头颈部CT/MR配准方法

扫码查看
针对头颈部图像的复杂解剖结构和不同模态图像的差异,提出一种改进的多模态配准方法.该方法采用局部归一化互信息作为相似性测度,以捕捉局部图像区域的相似性,并减少不同区域间的强度差异对配准结果的影响.此外,为解决MR图像易受到噪声和伪影的影响产生畸变的问题,引入F范数约束配准过程,抑制不必要的畸变.实验结果表明,所提方法在降低均方误差、提高配准精度和鲁棒性方面均有所提高.
3D Head and Neck CT/MR Registration Method Based on Local Normalized Mutual Information Joint Constraint
An improved multimodal registration method is proposed for the complex anatomical struc-ture of head and neck images and the differences of different modal images.This method uses local normal-ized mutual information as a similarity measure to capture the similarity of local image regions and reduce the influence of intensity differences between different regions on the registration results.In addition,in or-der to solve the problem that MR images are susceptible to distortion caused by noise and artifacts,we in-troduce an F-norm constrained registration process to suppress unnecessary distortion.Experimental re-sults show that the proposed method improves the mean squared error,the registration accuracy and ro-bustness.

non-rigid registrationmutual informationF-norm regularizationnormalized mutual in-formationmulti-modal registration

商奥雪、王玉、王明泉、贾虎、成向北、李文波

展开 >

中北大学信息与通信工程学院,山西 太原 030051

非刚性配准 互信息 F范数正则化 归一化 多模态配准

山西省重点研发计划资助项目山西省应用基础研究项目面上自然基金资助项目

201803D121069201801D121162

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(3)
  • 19