首页|基于粒子群差分进化极限学习机的电力系统故障诊断模型

基于粒子群差分进化极限学习机的电力系统故障诊断模型

扫码查看
针对电力系统发生的故障进行快速诊断,对电网及时恢复供电、降低故障影响具有非同寻常的意义.为了有效处理电力系统故障中存在的保护继电器和断路器运行的不确定性,提出了一种基于多重随机变异粒子群差分进化算法(MRPSODE)的极限学习机故障诊断模型,利用MRPSODE算法确定极限学习机最佳的隐含层节点个数,实现高效率的故障诊断.采用交叉验证方法降低噪声对原始样本数据的影响,确保诊断性能.实际故障案例的仿真分析结果表明,所提方法能够成功诊断复杂故障,与其他方法相比具有较强的竞争力.
Power System Fault Diagnosis Model Via Particle Swarm Differential Evolution-based Extreme Learning Machine
Rapid diagnosis for faults occurring in power systems is of extraordinary significance for timely restoration of power supply and reduction of fault impact.In order to effectively deal with the uncer-tainty in the operation of protective relays and circuit breakers during power system faults,this paper pro-poses an extreme learning machine-based fault diagnosis model based on particle swarm differential evolu-tion algorithm with multiple random variants(MRPSODE).The MRPSODE is used to determine the opti-mal number of nodes in the hidden layer of extreme learning machine to achieve efficient fault diagnosis.A cross-validation method is used to reduce the influence of noise on the original samples to improve the di-agnosis performance.Simulation results of actual fault cases show that the proposed method can success-fully diagnose complex faults and is competitive compared with other methods.

fault diagnosisextreme learning machineevolutionary algorithmcross-validation

张耀、姚瑶、陈卓、袁子霞、熊国江

展开 >

贵州电网有限责任公司电力调度控制中心,贵州 贵阳 550002

贵州大学电气工程学院,贵州 贵阳 550025

故障诊断 极限学习机 进化算法 交叉验证

国家自然科学基金资助项目

51907035

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(3)
  • 21