首页|基于WSN的旋转机械设备故障时频监测方法

基于WSN的旋转机械设备故障时频监测方法

扫码查看
由于旋转机械设备结构和振源较为复杂,以单一故障经验设置的阈值无法准确分解多模态故障,为提升故障监测效果,提出基于 WSN的旋转机械设备故障时频监测方法.引入集合经验模态分解故障时频信号,分解不同时刻的振动信号,计算IMF分量的能量,结合归一化能量指标和IMF矩阵奇异谱熵指标,完成旋转机械设备故障时频信号分解.根据特征分解结果,运用训练后免疫RBF神经网络监测旋转机械设备故障.实验结果表明,该方法能够缩短监测时间、提高故障监测准确率.
Time Frequency Monitoring Method of Rotating Machinery Equipment Fault Based on WSN
Due to the complex structure and vibration source of rotating machinery equipment,the threshold set by single fault experience cannot accurately decompose multi-modal faults.In order to im-prove the fault monitoring effect,a time-frequency monitoring method for rotating machinery equipment faults based on WSN is proposed.The time-frequency signal of fault is decomposed by the collective em-pirical mode,the vibration signal at different times is decomposed,the energy of the IMF component is cal-culated,and the normalized energy index and the IMF matrix singular spectrum entropy index are com-bined to complete the decomposition of the fault time-frequency signal of rotating machinery equipment.According to the results of feature decomposition,the trained immune RBF neural network is used to mo-nitor the faults of rotating machinery.The experimental results show that this method can shorten the mo-nitoring time and improve the fault monitoring accuracy.

set empirical moderotating mechanical equipmentfault monitoringtime frequency moni-toringprincipal component analysisRBF neural network

孙留存、胡从川、钱大龙

展开 >

中国绿发投资集团有限公司,北京 100020

集合经验模态 旋转机械设备 故障监测 时频监测 主成分分析 RBF神经网络

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(3)
  • 11