首页|基于鲸鱼优化和批量规范化卷积神经网络的振动信号去噪

基于鲸鱼优化和批量规范化卷积神经网络的振动信号去噪

扫码查看
由于初始权值的随机选取,传统卷积神经网络模型易陷入局部最优解,难以从噪声振动信号中提取纯净信号.针对这一问题,提出鲸鱼优化算法和批量规范化卷积神经网络相结合的振动信号去噪方法.该方法通过批量规范化层对隐层中的参数分布进行归一化,采用鲸鱼优化算法对网络权值参数进行寻优,解决网络模型存在局部最优的问题.将含噪振动信号的幅度谱和噪声信号的时域波形分别作为网络的训练特征和目标,充分利用振动信号在时频域上的分布特性,通过残差学习实现去噪的目的.实验表明,与小波阈值去噪方法、EMD方法和卷积神经网络相比,所提方法有效提升了信噪比,降低了均方误差和平均绝对误差,有效保留了振动信号原始特征,并增强了其去噪能力.
A Convolutional Neural Network with Whale Optimization and Batch Normalization for the Denoising of Vibration Signal
Due to the random selection of the initial weights,traditional convolutional neural network is prone to trap in local optimum,which leads to the difficulties in the extraction of clean signals from noisy vibration signals.To address this problem,a convolutional neural network with whale optimization and batch normalization(WO-BN-CNN)is proposed.A batch normalization layer is added after the convolu-tional neural network to normalize the parameter distribution in the hidden layer.The whale optimization algorithm is applied to optimize the network weight parameters.The amplitude spectrum of the noisy vi-bration signal and the time-domain waveform of the noisy signal are taken as the training features and the training target respectively to fully utilize the distribution characteristics of vibration signals in the time-frequency domain and realize the denoising by residual learning.The experimental results show that the proposed method improves the signal-to-noise ratio and reduces the mean square error and mean abso-lute error compared with wavelet threshold denoising,EMD,convolutional neural network,which enhances the denoising ability while preserving the original features of the vibration signal.

whale optimizationbatch normalizationdeep learningvibration signaldenoising

谭继勇、罗俊、谢江涛、秦玉玺、汪友明

展开 >

西南电子设备研究所,四川 成都 610036

西安邮电大学自动化学院,陕西西安 710121

鲸鱼优化 批量规范化 深度学习 振动信号 去噪

国家自然科学基金陕西省重点研发计划

518754572022SF-259

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(4)
  • 14