首页|基于多源传感的智能双馈风机机械振动故障监测方法

基于多源传感的智能双馈风机机械振动故障监测方法

扫码查看
针对双馈风机机械振动故障监测存在的信噪比低、故障监测分类差和时间长的问题,提出基于多源传感的智能双馈风机机械振动故障监测方法.首先采用信息熵度量智能双馈风机振动信号变化情况,获取信号在时-频域上的信息熵特征,融合多源传感信号信息特征;然后引入全局搜索因子改进人工蜂群算法,通过改进的人工蜂群算法优化支持向量机;最后将提取并融合后的振动信号特征输入训练后的支持向量机,完成智能双馈风机机械振动故障监测.实验结果表明,所提方法的去噪效果和故障监测分类效果好、监测时间短.
Mechanical Vibration Fault Monitoring Method of Intelligent Doubly-fed Fan Based on Multi-source Sensing
Aiming at the problems of low signal-to-noise ratio,poor fault monitoring classification and long time in the mechanical vibration fault monitoring of doubly fed fans,a method for monitoring the mechanical vibration fault of the intelligent DFIG based on multi-source sensing is proposed.Firstly,in-formation entropy is used to measure the change of the vibration signal of the intelligent doubly-fed fan,the information entropy characteristics of the signal in the time-frequency domain are obtained,and the information characteristics of multi-source sensor signals are fused;then a global search factor is intro-duced to improve the artificial bee colony method,and the support vector machine is optimized by the im-proved artificial bee colony method;finally,the extracted and fused vibration signal features are input into the trained support vector machine to complete the mechanical vibration fault monitoring of the intelligent doubly-fed fan.The experimental results show that the proposed method has good denoising effect and fault monitoring classification effect,and the monitoring time is short.

multi-source sensingintelligent doubly-fed fanmechanical vibration faultfault monito-ringsupport vector machine

谭振国、曾佳佳、牛国智、邓睿、刘旭东

展开 >

五凌电力有限公司长沙生产运营中心,湖南长沙 410004

五凌电力有限公司长沙生产运营中心生产技术部,湖南长沙 410004

五凌电力有限公司新能源分公司,湖南长沙 410004

多源传感 智能双馈风机 机械振动故障 故障监测 支持向量机

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(6)
  • 15