首页|大型抽水蓄能电站水轮机组机械振动故障判别模型

大型抽水蓄能电站水轮机组机械振动故障判别模型

扫码查看
为了提高大型抽水蓄能电站水轮机组机械振动故障判别精度,以及时对其进行维修,保证抽水蓄能电站水轮机组设备安全运行,延长机械使用时长,提出了一种水轮机组机械振动故障判别方法.利用无量纲处理水轮机组机械信号,去除冗余信号,确定振动参数加权分布,设置故障特征量权值,构建抽水蓄能电站水轮机组分布式健康函数,完成水轮机组机械振动故障判别方法设计,检测水轮机组是否为正常状态,实现机械振动故障判别.实验表明,所提模型可以准确判别故障振动,确保后续及时维修,提高工作效率.
Fault Diagnosis Model for Mechanical Vibration of Hydraulic Turbine Units in Large Pumped Storage Power Stations
In order to improve the accuracy of mechanical vibration fault diagnosis for hydraulic turbine units in large pumped storage power plants so as to timely repair them,ensure the safe operation of hy-draulic turbine equipment in pumped storage power plants,and extend the service life of machinery,a method for mechanical vibration fault diagnosis of hydraulic turbine units is proposed.By using dimension-less processing for the mechanical signals of the hydraulic turbine unit,redundant signals are removed.Then,the weighted distribution of vibration parameters is determined,and the weight of fault characteristic quantity is set.Next,a distributed health function for the hydraulic turbine unit of pumped storage power station is constructed.With the above steps,the design of the mechanical vibration fault discrimination method for the hydraulic turbine unit is completed,and the normal status of the hydraulic turbine unit is detected,so as to achiev mechanical vibration fault diagnosis.Through experiments,it is proved that the proposed model can accurately identify fault vibrations,ensure timely follow-up maintenance,and improve work efficiency.

large pumped storage power stationhydraulic turbine unitmechanical vibrationfault iden-tificationsignal processing

蔡喜昌、冯文嵛、林杰胜、林泳骏、李东璐

展开 >

南方电网调峰调频发电有限公司运行分公司,广东清远 513207

大型抽水蓄能电站 水轮机组 机械振动 故障判别 信号处理

南方电网基金项目

02910020220301030200016

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(7)
  • 10