首页|基于QPSO-LSTM模型的锂电池剩余容量预测

基于QPSO-LSTM模型的锂电池剩余容量预测

扫码查看
为克服锂离子电池容量预测精度低的问题,提出了一种量子粒子群改进长短期记忆神经网络(QPSO-LSTM)的电池容量预测技术.分析了量子粒子群改进(QPSO)和长短期记忆神经网络(LSTM)算法的基本原理,利用QPSO算法对LSTM模型神经元个数、学习率等主要超参数进行寻优,解决长时序数据预测精度差和预测模型超参数难以确定的问题,构建了 QPSO-LSTM模型.最后,以NASA电池为分析对象,分别采用QPSO-LSTM、PSO-LSTM、LSTM和GA-BP这4种预测模型对2种不同型号的电池进行剩余容量预测,预测结果表明,QPSO-LSTM模型预测精度高,误差在1.5%范围内,为电池剩余容量的预测提供了一种有效的方法.
Prediction of Remaining Capacity of Lithium Battery Based on QPSO-LSTM Model
To overcome the problem of low accuracy in predicting lithium-ion battery capacity,a quan-tum particle swarm optimization improved long short-term memory(QPSO-LSTM)neural network bat-tery capacity prediction technology is proposed.Firstly,the basic principles of QPSO and LSTM algorithms are analyzed.Then,to solve the problems of poor prediction accuracy and difficulty in determining hyperpa-rameters for long-term data,the QPSO algorithm is used to optimize the main hyperparameters of the LSTM model,such as the number of neurons and learning rate.The QPSO-LSTM model is constructed.Finally,taking NASA batteries as the analysis object,four prediction models,QPSO-LSTM,PSO-LSTM,LSTM,and GA-BP are used to predict the remaining capacity of two different types of batteries.The prediction results show that the QPSO-LSTM model had high prediction accuracy,with an error within 1.5%,providing an effective method for predicting the remaining capacity of batteries.

lithium batterycapacity predictionquantum particle swarm optimization algorithmLSTM neural network

王丽玲、孙晓波、宋树平、张敬、马明叶

展开 >

中国长江电力股份有限公司,湖北武汉 430050

常熟理工学院,江苏苏州 215500

锂电池 容量预测 量子粒子群算法 LSTM神经网络

长江电力股份有限公司科技项目

5323020034

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(9)
  • 10