首页|基于A*与DWA算法的融合优化策略研究

基于A*与DWA算法的融合优化策略研究

扫码查看
针对单独使用A*或DWA算法难以同时实现全局路径最优和动态避障的问题,提出了一种基于A*算法与DWA算法的优化融合策略.通过引入环境复杂度动态权重因子,优化A*算法评价函数,提高算法的适应性;采用冗余点去除策略对A*算法生成的全局路径进行优化,以提高路径效率;考虑移动机器人周围环境状况,引入距离自适应系数对DWA算法的评价函数进行优化,提高了局部路径规划的性能;以优化后A*算法生成的全局路径中的关键节点作为DWA算法的临时目标点进行路径规划,实现全局路径最优化与实时避障的兼顾.最后,通过多组仿真实验验证了改进算法的可行性.
Research on Fusion Optimization Strategy Based on A* and Dynamic Window Approach Algorithms
Aiming to address the challenge of achieving both global path optimality and dynamic obsta-cle avoidance when using A* or DWA algorithms individually,a novel optimization fusion strategy based on the integration of A* and DWA algorithms is proposed.The approach involves introducing a dynamic weight factor for environmental complexity to optimize the A* algorithm's evaluation function and enhance its adaptability.Redundant point removal strategy is employed to optimize the global path generated by the A* algorithm,thereby improving path efficiency.Considering the surrounding environment of the mobile robot,a distance-adaptive coefficient is introduced to optimize the evaluation function of the DWA algo-rithm,enhancing the performance of local path planning.The optimized key nodes from the A* algorithm's generated global path are used as temporary target points for the DWA algorithm,achieving a balance be-tween global path optimality and real-time obstacle avoidance.Finally,the feasibility of the improved al-gorithm is validated through multiple sets of simulation experiments.

mobile robotpath planningdynamic weighting factorimproved A* algorithmfusion algorithm

姜海猛、张志安、潘孝斌

展开 >

南京理工大学机械工程学院,江苏 南京 210094

移动机器人 路径规划 动态权重因子 改进A*算法 融合算法

2024

机械与电子
中国机械工业联合会科技工作部 机械与电子杂志社

机械与电子

CSTPCD
影响因子:0.243
ISSN:1001-2257
年,卷(期):2024.42(10)