首页|基于改进粒子群算法的路径规划研究与应用

基于改进粒子群算法的路径规划研究与应用

Research and Application of Path Planning Based on Improved Particle Swarm Optimization

扫码查看
为解决应用于旅行商问题的基本粒子群算法存在的收敛精度不高且早熟等问题,提出一种改进自适应杂交退火粒子群(IAHAPSO)算法.该算法采用基于种群离散度的分种群式自适应调整惯性权重,引导种群的正确进化发展方向;采用模拟退火算法更新群体极值的策略,避免粒子搜索陷入局部最优解;并在种群发展过程中引入遗传杂交算子,增加种群的多样性.通过3种标准TSPLIB测试集验证所提IAHAPSO算法在求解精度及效率上的可行性和优越性.以四轴裁剪机试验系统进一步验证所提算法的有效性.
In order to improve the low convergence accuracy and premature in the basic particle swarm algorithm applicable to the traveling salesman problem,an improved adaptive hybrid annealing particle swarm(IAHAPSO)algorithm was proposed.The algorithm adopts the population dispersion-based adaptive adjustment of the inertia weight to guide the correct evolutionary direction of the population,applies the simulated annealing algorithm to update the population extreme value strategy so as to avoid the particle search falling into the local optimal solution,and introduces the genetic hybridization operator to increase the diversity of the population in the process of population development.Its feasibility and superiority in solution accuracy and efficiency are verified by three standard TSPLIB test sets,and its effectiveness is further verified by a four-axis cutting machine test system.

travel salesman problemparticle swarm optimizationsimulated annealinggenetic algorithmpath planning

董林威、高宏力、潘江

展开 >

西南交通大学机械工程学院,四川成都 610031

旅行商问题 粒子群优化 模拟退火 遗传算法 路径规划

国家自然科学基金

51775452

2023

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2023.52(6)
  • 1
  • 5