首页|基于RBF神经网络的柔性机械手反演控制

基于RBF神经网络的柔性机械手反演控制

Inversion Control of Flexible Manipulator Based on RBF Neural Network

扫码查看
针对柔性机械手动力学方程复杂、具有高度非线性等特点,在控制律设计中引入反演设计思想,将原复杂的高阶非线性系统分解成低阶简单系统.考虑到动力学模型中存在未知的非线性函数,为了能够对被控对象中未知函数进行有效逼近,设计一种将径向基函数(RBF)神经网络与反演控制思想相融合的控制方法.仿真结果表明:基于RBF神经网络反演控制所设计的控制律和自适应律能够实现控制系统稳定,满足期望的动态性能指标.
With respect to the complexit and high nonlinearity of the dynamic equations of the flexible manipulator,inversion design ideas are introduced in the control law design to decompose the original complex high-order nonlinear system into low-order simple systems.Considering that the existence of unknown nonlinear functions in the dynamic model and in order to effectively approximate the unknown function in the controlled object,proposes a control method integrating radial basis function(RBF)neural network with inversion control ideas.The simulation results show that the control law and adaptive law designed based on the RBF neural network backstepping control can achieve the stability of the control system and abtain the expected dynamic performance indicators.

flexible manipulatorbackstepping controlnonlinear functionRBF neural network

李正强、刘益军、赖建防、吕伟宏

展开 >

佛山三水供电局,广东佛山 528199

宁波天弘电力器具有限公司,浙江宁波 315722

柔性机械手 反演控制 非线性函数 RBF神经网络

中国南方电网科技资助项目

GDKJXM20201943

2023

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2023.52(6)
  • 10