首页|基于改进SCKF算法的机车目标跟踪速度误差分析

基于改进SCKF算法的机车目标跟踪速度误差分析

扫码查看
为实现机车目标的高效跟踪,构建一种可以实现自适应匀加速分析的模型并能够进行波形自主调控的平方根容积卡尔曼滤波跟踪算法.在确定发射波形的过程中,应确保后续时刻达到最低的目标状态估计误差.利用波形捷变的方法可以得到最优波形参数,显著增强系统跟踪机车目标的能力.研究结果表明:经过波形调控后,本算法可以使目标方位误差减小89.56%、运动速度误差减小84.04%,加速度误差减小59.54%,并使耗时降低不明显;可以实现方位误差以及速度误差的缓慢降低,具备优异鲁棒性;信噪比减小后,表现出更优的性能.与其他各算法相比,本算法能够自适调节各项参数,获得更高的跟踪精度,所需的计算量也较小.
Speed Error Analysis of Maneuvering Target Tracking Based on Improved SCKF Algorithm
In order to realize efficient maneuvering target tracking,this paper proposes an adaptive uniform velocity model and a square-root volume kalman filter tracking algorithm with function of autonomous waveform scheduling.In the process of determing transmitting waveform,the subsequent moments are ensured to achieve the minimum targeting status of estimated errors.The waveform agility method is applied to abtain the optimal waveform parameters,which significantly enhances the capability of maneuvering target tracking systematically.The reserch results show that the proposed algorithm,after waveform scheduling,reduces the errors of target azimuth,speed and acceleration respectivelyby 89.56%,84.04%and 59.54%,with no obvious time consumption.The improved algorithm has high quality robustness for the slowdown of azimuth and speed errors,and exhibits better performance for the reduction of signal-to-noise ratio.Comparing with other algorithms,the algorithm can adaptively regulate various parameters for higher tracking accuracy with less computation.

maneuvering target trackingspeed errorwaveform schedulingsquare root volume kalman filtering

何宗文、张岩

展开 >

西咸新区轨道交通投资建设有限公司,陕西西安 710016

新风光电子科技股份有限公司,山东汶上 272509

机车目标跟踪 速度误差 波形调度 平方根容积卡尔曼滤波

陕西科技创新基础开发一般项目

2019A5100263

2024

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2024.53(1)
  • 15