首页|基于机器视觉的镍板材表面缺陷检测研究

基于机器视觉的镍板材表面缺陷检测研究

扫码查看
针对电解法提纯镍板材表面出现的质量缺陷,设计改进Canny的缺陷检测方法.利用双边滤波使图像去噪保边,研究一种增强梯度的掩模并融入Sobel中形成双层卷积核,增强缺陷边缘梯度,弱化缺陷内部及背景区域的梯度.采用分水岭算法代替非极大抑制与形态学边缘连接算法进行边缘细化.实验结果表明:本算法对镍板缺陷的检测效果优于经典算法和其他几种改进算法.
Nickel Plate Surface Defect Detection Base on Machine Vision
To handle the quality defects on the surface of nickel sheet,a defect detection method combining adaptive fractional differentiation and improved Canny algorithm is proposed.Bilateral filtering is used to denoise and preserve the edge of the image.A gradient-enhancing mask is designed and integrated into Sobel to form a double-layer convolution kernel,enhancing defect edges gradient and weakening the gradient inside the defect and in the background area.The watershed algorithm is applied to replace the non-maximum suppression and the morphological edge connection algorithm for edge refinement.The experimental results show that the detection effect of the proposed algorithm on nickel plate defects is better than the classical algorithm and some other improved algorithms.

machine visionsurface defect detectionimproved Cannymaximum entropy

李建华、刘广鹏、赵正天、雷春丽

展开 >

兰州理工大学机电工程学院,甘肃兰州 730050

兰州理工大学电气工程与信息工程学院,甘肃兰州 730050

机器视觉 表面缺陷检测 改进Canny 最大熵

国家重点研发计划项目

2020YFB1713600

2024

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2024.53(3)