首页|基于注意力SRU的离散制造过程生产异常分析

基于注意力SRU的离散制造过程生产异常分析

扫码查看
为了判断生产异常对生产过程产生何种影响,在对离散制造过程中产生的物联数据进行详细分析的基础上,设计一种基于注意力SRU神经网络的生产任务剩余完工时间预测模型,通过并行化的特征提取过程并结合注意力机制给予不同时刻信息不同权重来对生产任务的延期交付时间进行预测,达到了解量化生产异常对于生产过程影响程度的目的,且有效提高了算法效率和准确率,从而帮助车间工作人员进行后续决策管控工作.
Production Anomaly Analysis of Discrete Manufacturing Process Based on Attention SRU
In order to judge the impact of production anomalies on production process,a prediction model for the remaining completion time of production tasks based on attention SRU neural network was designed after detailed analysis of the Internet of Things data generated in discrete manufacturing process.Through the parallel feature extraction process and by combination with the attention mechanism,different weights of information at different moments were given to predict the delayed delivery time of production tasks,which achieves the purpose of quantifying the impact of production anomalies on production process,and effectively improves the efficiency and accuracy of the algorithm,so as to help the workshop staff carry out subsequent decision-making control work.

discrete manufacturing processInternet of Manufacturing Things dataproduction anomaly analysisattention mechanismSRU neural network

马云骁、郭宇、王胜博

展开 >

南京航空航天大学 机电学院,江苏 南京 210016

离散制造过程 制造物联数据 生产异常分析 注意力机制 SRU神经网络

国防基础科研项目国防基础科研项目

JCKY2018203A001JCKY2019204A004

2024

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2024.53(4)
  • 2