首页|基于多轴自注意力的无人机避障模型

基于多轴自注意力的无人机避障模型

扫码查看
针对无人机在飞行过程中容易因旋翼碰撞而坠毁的问题,提出利用改进的图像识别模型实现自动预警.将瓶颈多轴自注意力模块(BMSA)嵌入到图像识别模型中进行改进,提升模型对细小物体的识别准确率.多轴自注意力层在低分辨率阶段替换原本卷积层,使得模型能够兼顾局部自注意力和全局自注意力.实验结果表明:改进得到的多轴自注意力的残差网络(MS-ResNet)具有较高的障碍物识别准确率,能实现较好的预警效果.
UAV Obstacle Avoidance Model Based on Multi-axis Self-attention
To address the proneness of UAV crash due to rotor collision during flight,an improved image recognition model is proposed to achieve automatic warning.A bottleneck multi-axis self-attention module(BMSA)is embedded into the image recognition model for improvement,enabling the model to improve the recognition accuracy of the model for fine objects.The multi-axis self-attentive layer replaces the original convolutional layer in the low-resolution stage,enabling the model to obtain both local self-attention and global self-attention.The experiments show that the improved multi-axis self-attentive residual network(MS-ResNet)has high accuracy of obstacle recognition and achieve a better early warning effect.

image recognitiondeep learningself-attention mechanismconvolutional neural networkobstacle avoidance modelUAV

王新文、赵伟杰

展开 >

福州大学 先进制造学院,福建 泉州 362251

中国科学院 海西研究院泉州装备制造研究中心,福建 泉州 362216

图像识别 深度学习 自注意力机制 卷积神经网络 避障模型 无人机

福建省科技计划引导性项目

2022H0042

2024

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2024.53(4)
  • 2