首页|基于数据关联表征的工业零件检测

基于数据关联表征的工业零件检测

扫码查看
为实现自动化工业生产中零件的自动识别,对深度残差网络的残差结构进行改进.将储备池模块应用到残差网络的残差连接结构中,使得输入数据的各个区域互相关联后重新进行表征.将提出的模型在工业零件数据集以及公开数据集上与其他深度学习模型进行比较.结果表明:在工业零件数据集上提出的具有数据关联表征的残差网络ResNet18-RC比ResNet18 提高了 0.17%,且均比其他模型的识别率高.在CIFAR-10、CIFAR-100、Tiny-ImageNet等公开数据集上,具有数据关联表征的残差网络ResNet50-RC分别比ResNet50 提高了 0.35、0.62、0.54、1.31 个百分点的精度,具有很好的图像检测性能.
Industrial Parts Detection Based on Data Correlation Representation
For the realization of automatic identification of industrial parts in automated industrial production,the residual structure of deep residual network is upgraded.The reservoir module is applied to the residual connection structure of the residual network so that each area of the input data can be represented after being correlated with each other.The proposed model is compared with other deep learning models on industrial parts dataset and public dataset.The experimental results show that the proposed residual network with data correlation representation Resnet18-RC is 0.17%,better than ResNet18 on the industrial parts dataset,and the recognition accuracy is higher than other models.The public dataset like CIFAR-10,CIFAR-100 and Tiny-Imagined indicates that the residual network Resnet50-RC is respectively 0.35,0.62,0.54,1.31 per cent,higher than ResNet50 in terms of accuracy,and has good image recognition performanc.

image recognitionresidual neural networkreservoir computingdata correlation representationindustrial parts

黎沩安、杨冬平

展开 >

福州大学 先进制造学院,福建 晋江 362251

中国科学院 海西研究院泉州装备制造研究中心,福建 晋江 362216

之江实验室 人工智能研究院混合增强智能研究中心,浙江 杭州 311101

图像识别 残差神经网络 储备池计算 数据关联表征 工业零件

国家自然科学基金项目

12175242

2024

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2024.53(5)
  • 1