首页|港口场景集装箱锁孔目标智能检测研究

港口场景集装箱锁孔目标智能检测研究

扫码查看
为解决集装箱图像受到外界光线环境的影响造成信息对比度低、暗部细节信息不明显和图像信息难以辨认清等问题,提出一种新的图像增强算法,其重点是利用非线性变换,提高图像的暗部细节,将原本的RGB模型转化到HSV模型进行均衡化.利用实际工程中港口所提供的测试数据集,使用已训练好的模型进行广泛的实验.实验还探究了图像增强算法对卷积神经网络性能的影响,利用对比度受限的自适应直方图均衡化、伽马校正、拉普拉斯变换以及原始图像与该算法进行对比,使用10 折交叉验证了该算法的精确率、召回率均大于其他的算法.采用配对T检验,比较分析采用各算法间的各项指标差异,结果表明:该算法相比其他算法的效果要好.
Research on Target Intelligent Detection of Port Container Keyhole
In order to solve the problems of low contrast of information,obscure details and difficulty in identifying image information caused by external light environment in container images,proposes a new image enhancement algorithm,which focuses on improving the dark part details of the image by using nonlinear transformation and converting the original RGB model to the HSV model for equalization.Using the test data set provided by the port in the actual project,a wide range of experiments are carried out with the trained model.The experiment explores the effect of image enhancement algorithm on the performance of convolutional neural network.The contrast limited adaptive histogram equalization,gamma correction,Laplace transform and original image are compared with the proposed algorithm,and the 10-fold cross is used to verify the accuracy rate and recall rate of the proposed algorithm,which are greater than other algorithms.The paired T test is used to compare and analyze the differences of each index among the algorithms.And the results show that the proposed algorithm has better effect than other algorithms.

image enhancement algorithmconvolutional neural networktarget detectionhistogram equalization

杨晓翔、林云帆、刘键涛

展开 >

福州大学 机械工程及自动化学院,福建 福州 350116

图像增强算法 卷积神经网络 目标检测 直方图均衡化

国家自然科学基金资助项目

11972005

2024

机械制造与自动化
南京机械工程学会 南京机电产业(集团)有限公司

机械制造与自动化

CSTPCD
影响因子:0.29
ISSN:1671-5276
年,卷(期):2024.53(5)
  • 1