首页|基于BP神经网络的中药饮片生产风险预测

基于BP神经网络的中药饮片生产风险预测

扫码查看
本文对中药饮片生产风险问题进行深入研究,采用BP神经网络构建风险预测模型.通过调查大量生产数据,选取关键变量,模型在隐藏层节点数为 14 时表现出色,迭代 11 次后误差值显著降低,相关系数高达 0.940 35,展现出高拟合和泛化能力.相较于传统方法,该模型能更早发现风险,为中药饮片生产风险预测提供新方法,有助于提升生产效率、降低成本、减少企业损失,对中药饮片行业的安全生产具有重要意义.
Risk prediction of traditional Chinese medicine decoction pieces production based on BP neural network
This article conducts an in-depth study on the risk issues in the production of traditional Chinese medicine decoction pieces,and utilizes BP neural networks to construct a risk prediction model.Through investigating a large amount of production data and selecting key variables,the model has demonstrated excellent performance when the number of hidden layer nodes is set to 14.After 11 iterations,the error value has significantly decreased,and the correlation coefficient is as high as 0.940 35,showing high fitting and generalization capabilities.Compared with traditional methods,this model can detect risks earlier,providing a new approach for risk prediction in the production of traditional Chinese medicine decoction pieces.It helps to improve production efficiency,reduce costs and minimize losses for enterprises,which is of great significance to the safe production of the traditional Chinese medicine decoction piece industry.

Chinese medicine decoction piecesProduction riskBP neural networkRisk prediction

娄黎明、白莹

展开 >

北京信息科技大学经济管理学院 北京 100192

中药饮片 生产风险 BP神经网络 风险预测

2024

质量安全与检验检测
中国检验检疫科学研究院

质量安全与检验检测

影响因子:0.399
ISSN:2096-8876
年,卷(期):2024.34(3)
  • 8