首页|基于机器学习的盾构开挖面地质类型智能识别研究

基于机器学习的盾构开挖面地质类型智能识别研究

扫码查看
盾构法被广泛应用于地铁隧道项目中,但是复杂的地质环境会让盾构施工发生卡机,刀盘磨损,超欠挖、地面塌陷等问题。因此,准确、及时地感知地质条件变化至关重要。目前我国大多通过钻孔手段进行地质勘察,而先进的地质预测方法也不能满足盾构快速掘进的要求。因此,提出了一种识别盾构开挖面地质类型的机器学习模型。该模型将遗传算法(GA)与分布式梯度增强库(XGBoost)相结合,通过GA来确定XBGoost模型的最优超参数。同时,依托福州滨海快线三标段项目盾构与地质数据,对模型进行验证,并与其他3种经典机器学习模型LightGBM、Random Forest、SVR进行对比,以进一步验证模型的鲁棒性。结果表明,GA-XGBoost模型精度具有明显优势,通过GA来搜寻模型超参数也可提升模型准确率。
Study on Intelligent Recognition of Geological Types in Shield Excavation Face Using Machine Learning
The shield method is widely applied in subway tunnel projects,but complex geological environments can lead to issues like jamming,cutterhead wear,over-excavation,and ground subsidence during shield construction.Accurate and timely detection of geological condition changes is crucial.In China,geological surveys are primarily conducted through drilling,and existing advanced geological prediction techniques often fail to meet the demands of rapid shield tunneling.A machine learning model is proposed to identify geological types at the shield excavation face.This model integrates Genetic Algorithm(GA)with the eXtreme Gradient Boosting(XGBoost)library to determine optimal hyperparameters for the XGBoost model.The model is validated using shield and geological data from the third section of the Fuzhou Binhai Express Line and is compared with three classical machine learning models—LightGBM,Random Forest,and SVR—to assess its robustness.Results demonstrate that the GA-XGBoost model significantly outperforms the alternatives in accuracy,with GA effectively enhancing model precision by optimizing hyperparameters.

shield methodsubway tunnelgeological surveysurrounding rock identificationmachine learning modelgenetic algorithm(GA)Distributed Gradient Boosting Library(XGBoost)

周鲁、刘胜利、王宇超、谢雄耀

展开 >

广州地铁设计研究院股份有限公司 广东 广州 510000

同济大学土木工程学院地下建筑与工程系 上海 200092

同济大学岩土及地下工程教育部重点实验室 上海 200092

盾构法 地铁隧道 地质勘察 围岩识别 机器学习模型 遗传算法(GA) 分布式梯度增强库(XGBoost)

2025

建筑施工
上海建工(集团)股份有限公司

建筑施工

影响因子:0.584
ISSN:1004-1001
年,卷(期):2025.47(1)