首页|基于GBRT模型的海洋平台结构裂纹扩展识别

基于GBRT模型的海洋平台结构裂纹扩展识别

扫码查看
某海洋平台在多次维修中发现在生活楼与甲板连接的角隅处的裂纹有扩展现象,提出了根据裂纹周边多维应变进行裂纹长度识别的思想.搭建了含有初始裂纹的海洋平台有限元模型,以多维应变数据和对应裂纹长度分别作为机器学习模型特征输入与输出,通过梯度回归提升树(GBRT)模型对裂纹长度进行预测.测试结果表明,该模型对裂纹长度预测MSE(均方误差)值可达0.0006,R2可达0.9991,且该模型对噪声有良好的抗干扰性.
Crack extension identification of ocean platform structure by gradient boosting regression tree
After many times of maintenance of an offshore platform it is found that there is crack propagation at the corner which connects the living building to the deck.The idea of crack length identification based on the multi-dimensional strain around the crack is proposed in this paper.A finite element model of offshore platform with initial crack is built.Multi-scale strain data and corresponding crack length are used as feature input and output for the machine learning model respectively.The crack length is predicted by gradient boosting regression tree(GBRT)model.Test results show that the value of MSE and R2 can reach 0.0006 and 0.9991,respectively.At the same time,the model is proved to have good anti-interference to noise.

ocean platformcrack extensionmachine learninggradient boosting regression tree

李阳、苏馨、代彤彤、张崎、黄一、贾子光

展开 >

大连理工大学船舶工程学院,大连 116024

中国海洋石油集团有限公司,北京 100010

大连理工大学化工海洋与生命学院,盘锦 124221

华北电力大学(保定)机械工程系,保定 071003

展开 >

海洋平台 裂纹扩展 机器学习 GBRT算法

2024

科技导报
中国科学技术协会

科技导报

CSTPCD北大核心
影响因子:0.559
ISSN:1000-7857
年,卷(期):2024.42(13)