首页|线性代数中矩阵特征值与特征向量教学探讨

线性代数中矩阵特征值与特征向量教学探讨

扫码查看
线性代数教学的难点在于将抽象概念与几何意义相结合,逐步培养学生形象化的认知过程。文章运用数形结合的数学思想,从二维空间中的线性变换引出特征值与特征向量的几何意义;并针对大规模问题中特征多项式求解困难的情况,介绍了特征值与特征向量的数值解法以及讨论特殊矩阵对实特征值与特征向量的存在性的影响,旨在帮助学生深入理解线性代数的基本概念,提高其解决实际问题的能力。
Exploration of Teaching Matrix Eigenvalues and Eigenvectors in Linear Algebra
The difficulty of teaching linear algebra lies in combining abstract concepts with geometric meanings,gradually cultivating students'visual cognitive processes.This article uses the mathematical idea of combining numbers and shapes to derive the geometric meaning of eigenvalues and eigenvectors from linear transformations in two-dimensional space;And in response to the difficulty in solving feature polynomials in large-scale problems,this paper introduces the numerical solution of eigenvalues and eigenvectors,and discusses the influence of special matrices on the existence of real eigenvalues and eigenvectors,aiming to help students deepen their understanding of the basic concepts of linear algebra and improve their ability to solve practical problems.

matrix eigenvaluesmatrix eigenvectorsgeometric significancesolution methodexistence

常静雅、王奕杰

展开 >

广东工业大学 广东 广州 510000

矩阵特征值 矩阵特征向量 几何意义 求解方式 存在性

&&

广工大教字[2023]51号

2024

科教导刊
湖北省科学技术协会

科教导刊

影响因子:0.225
ISSN:1674-6813
年,卷(期):2024.(6)
  • 4