首页|基于多态模糊贝叶斯网络的高校实验室安全致险因子诊断与防范策略研究

基于多态模糊贝叶斯网络的高校实验室安全致险因子诊断与防范策略研究

扫码查看
致险因子诊断是防控高校实验室危险源的重要关口.针对已有研究在致险因子识别完备性、诊断精度与效率上的不足,基于扎根理论编码技术对 33 例高校实验室案例进行事故成因解构,萃取出 23 个主要致险因子;针对高校实验室风险的动态性、多态性和模糊性特征,构建多态模糊贝叶斯网络模型,利用其双向推理和重要度分析技术进行致险因子诊断,并以某高校实验室安全事故为实例进行方法应用,以验证该模型的有效性.结果表明:多态模糊贝叶斯网络能够实现对系统全过程的实时动态风险诊断,综合解决具有模糊性和多态性的复杂系统风险分析问题;学生及管理人员安全意识淡薄、学生及管理人员应急技能匮乏时,安全文化缺失出现严重失效的概率极大;安全意识薄弱、职责不清、安全检查与隐患整改不到位等为高校实验室安全事故发生的关键致险因子,应对其进行重点管控与治理.立足研究结果,从全体系加强实验室安全管理、全过程强化实验项目安全管理、全方位覆盖管控危险化学品、全面推进高校安全文化建设四方面提出相应防范策略.
Research on Diagnosis and Prevention Strategies of Risk-Inducing Factors in University Laboratories Based on Polymorphic Fuzzy Bayesian Networks
The diagnosis of risk factors is an important gateway for preventing and controlling hazardous sources in university laboratories.In response to the shortcomings of existing studies regarding the completeness,diagnostic accuracy,and efficiency of risk factor identification,grounded theory coding techniques are used to deconstruct the causes of accidents in 33 university laboratory cases,extracting 23 major risk factors.Considering the dynamic,polymorphic,and fuzzy characteristics of university laboratory risks,a polymorphic fuzzy Bayesian network model is constructed,utilizing its bidirectional reasoning and importance analysis techniques for risk factor diagnosis.33 laboratory safety accidents in a certain university are taken to validate the effectiveness of the model.The results indicate that the weak safety awareness of students and management personnel,along with their lack of emergency response skills,will increase the likelihood of severe failures in safety culture.Key risk factors leading to university laboratory safety accidents include weak safety awareness,unclear responsibilities,inadequate safety inspections,and insufficient rectification of hidden dangers.These factors should be prioritized for targeted control and management.The polymorphic fuzzy Bayesian network can achieve real-time dynamic risk diagnosis throughout the entire system,comprehensively addressing the complex system risk analysis problems characterized by fuzziness and polymorphism.Based on the model's findings,four corresponding preventive strategies are proposed:energizing laboratory safety management across the entire system,reinforcing safety management of experimental projects throughout the whole process,ensuring comprehensive control of hazardous chemicals,and advancing the overall construction of safety culture in universities.

laboratory safetyuniversity laboratoryrisk-inducing factorssafety accident preventionrisk diagnosispreventive strategiespolymorphic fuzzy Bayesian network

瞿英、段祯、曹树贵

展开 >

河北科技大学经济管理学院,河北 石家庄 050018

实验室安全 高校实验室 致险因子 安全事故防范 风险诊断 防范策略 多态模糊贝叶斯网络

2024

科技管理研究
广东省科学学与科技管理研究会

科技管理研究

CSTPCDCHSSCD
影响因子:0.779
ISSN:1000-7695
年,卷(期):2024.44(20)