首页|生成式人工智能引发的信息过载风险及其对策

生成式人工智能引发的信息过载风险及其对策

扫码查看
随着生成式人工智能(GAI)在各领域的广泛应用,其强大的信息生成能力容易诱发信息过载的风险,进而可能导致信息质量下降和筛选困难,故而,有必要深入探讨GAI引发的信息过载问题.通过分析GAI导致信息过载具体表现与成因,针对不同的问题提出具体的解决方案.GAI引发的信息过载风险主要表现为 3 个方面:其一,信息质量的下降;其二,信息筛选的困难;其三,信息的同质化.未来可以通过优化训练数据的质量和多样性、强化信息分类与过滤机制、改善信息展示与交互方式以及推进数据融合等措施缓解GAI引发的信息过载风险.以期增进对GAI引发信息过载问题的理解,为实际操作提供可行解决方案参考.
The Risk of Information Overload Caused by Generative Artificial Intelligence and Its Countermeasures
With the widespread application of generative artificial intelligence(GAI)in various fields,its powerful information generation ability is prone to induce the risk of information overload,which may lead to a decline in information quality and difficulty in screening.Therefore,it is necessary to explore the problem of information overload caused by GAI in depth.By analyzing the specific manifestations and causes of information overload caused by GAI,specific solutions are proposed for different problems.The information overload risk caused by GAI is mainly manifested in three aspects:first,the decline of information quality;second,the difficulty of information screening;third,the homogeneity of information.In the future,the information overload risk caused by GAI can be alleviated by optimizing the quality and diversity of training data,strengthening information classification and filtering mechanisms,improving information display and interaction methods,and promoting data fusion.This study aims to enhance the understanding of the information overload problem caused by GAI,and provides a feasible solution as a reference for practical operation.

generative artificial intelligenceinformation overloadinformation qualityinformation screeninginformation homogeneity

王惠敏、田新瑞

展开 >

江苏师范大学法学院,江苏 徐州 221116

白俄罗斯国立大学白中跨文化交流中心,明斯克 220030

生成式人工智能 信息过载 信息质量 信息筛选 信息同质

2024

科技管理研究
广东省科学学与科技管理研究会

科技管理研究

CSTPCDCHSSCD
影响因子:0.779
ISSN:1000-7695
年,卷(期):2024.44(20)