首页|生成式人工智能的数据风险与规制进路

生成式人工智能的数据风险与规制进路

扫码查看
生成式人工智能作为驱动世界新一轮科技革命和产业变革深入发展的关键性技术,将引领人工智能技术达到奇点,并引发人工智能应用的全面爆发.然而,在生成式人工智能主导的人工智能新时代,其数据驱动本质与内在技术逻辑引发数据输入、数据存储、模型训练与内容输出等层面的一系列根本性和系统性治理挑战.其中在数据输入端面临服务语料在质量与准确性、偏见与代表性、隐私与版权保护、污染与操纵等方面的风险;在存储端面临从数据访问控制不足到网络安全漏洞,从物理安全缺失到数据信息泄露等多个层面的风险;在运算端则涉及数据选取的非代表性偏见、数据标注的主观性偏见、模型中的算法放大偏见、模型中的反馈循环偏见等.因此,必须要优化数据采集流程,加强数据使用监管,强化数据安全性规范,提升算法透明度与可解释性,完善适应性强的动态内容治理体系,以建立一个安全、公平、自由的数字空间.
Data Risks and Regulation Approaches of Generative Artificial Intelligence
As a pivotal technology driving the new round of technological revolution and industrial transformation,generative artificial intelligence(AI)will lead artificial intelligence technology to a singularity and trigger a comprehensive explosion of AI applications.However,in the new era of artificial intelligence dominated by generative AI,its data-driven nature and inherent technical logic pose a series of fundamental and systemic challenges in data risk governance across various levels,including data input,storage,model training,and content output.At the data input level,the risks are encountered in terms of quality and accuracy,bias and representativeness,privacy and copyright protection,and contamination and manipulation of service corpora At the storage level,the risks range from insufficient data access control to network security vulnerabilities,and from lack of physical security to data information leakage.At the computation level,issues involve non-representative bias in data selection,subjectivity bias in data annotation,algorithmic amplification bias within models,and feedback loop bias within models.Therefore,it is imperative to optimize data collection processes,strengthen the supervision of data usage,reinforce data security regulations,enhance the transparency and interpretability of algorithms,and improve adaptive dynamic content governance systems to establish a secure,fair and free digital space.

generative artificial intelligencedata riskrisk governancedata securitydata supervisionalgorithmic biasdigital space

位涛涛

展开 >

西北工业大学马克思主义学院,陕西西安 710129

生成式人工智能 数据风险 风险治理 数据安全 数据监管 算法偏见 数字空间

2024

科技管理研究
广东省科学学与科技管理研究会

科技管理研究

CSTPCDCHSSCD
影响因子:0.779
ISSN:1000-7695
年,卷(期):2024.44(22)