首页|基于改进灰狼优化核极限学习机的疾病诊断模型

基于改进灰狼优化核极限学习机的疾病诊断模型

扫码查看
为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型.通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个疾病数据集上进行实验验证.实验结果显示:提出的模型在准确率、敏感性、特异性等评价指标方面相对于其他混合模型高出约1%~2%,带特征选择的优化模型相对于没有特征选择的模型在评价指标上也高出约1%~2%.结果表明提出的模型具有一定的优势.
Disease Diagnosis Model Based on Improved Grey Wolf Optimized Kernel Extreme Learning Machine
In order to improve the efficiency of disease diagnosis,a hybrid model of improved grey wolf optimization(IGWO)algorithm and kernel extreme learning machine(KELM)is proposed in this paper.By introducing a new mechanism to improve the exploration and exploitation abilities of grey wolf optimization algorithm.In addition to feature selection,the improved Grey Wolf optimization algorithm also optimizes two key parameters of the kernel extreme learning machine.The model was tested on two disease data sets.The experimental results show that the proposed model is about 1%-2%higher than other hybrid models in terms of accuracy,sensitivity and specificity,and the optimized model with feature selection is about 1%-2%higher than the model without feature selection in terms of evaluation met-rics.The results show that the proposed model has certain advantages.

grey wolf optimization algorithmkernel extreme learning machinedisease diagnosisfeature selectionparameter optimization

魏瑞芳

展开 >

浙江邮电职业技术学院,浙江 绍兴 312366

灰狼优化算法 核极限学习机 疾病诊断 特征选择 参数优化

浙江省国内访问工程师项目(2022)

FG2022387

2024

科技通报
浙江省科学技术协会

科技通报

CSTPCDCHSSCD
影响因子:0.457
ISSN:1001-7119
年,卷(期):2024.40(3)
  • 19